325 research outputs found
Curvature-controlled defect dynamics in active systems
We have studied the collective motion of polar active particles confined to
ellipsoidal surfaces. The geometric constraints lead to the formation of
vortices that encircle surface points of constant curvature (umbilics). We have
found that collective motion patterns are particularly rich on ellipsoids, with
four umbilics where vortices tend to be located near pairs of umbilical points
to minimize their interaction energy. Our results provide a new perspective on
the migration of living cells, which most likely use the information provided
from the curved substrate geometry to guide their collective motion.Comment: Accepted manuscript. 8 pages, 7 Figures. Movies of the motion
patterns can be found at
https://www.youtube.com/playlist?list=PLEsE7_tnqXZ_U258VwxES8KAJTV_eO43
An Introduction into the Physics of Self-folding Thin Structures
Preprint.
The article was published in: Friedman, Michael/Schäffner, Wolfgang (eds.) (2016): On Folding. Towards a New Field of Interdisciplinary Research. Bielefeld: transcript, pp. 175–210
Experimental micromechanical characterisation of wood cell walls
International audienceThe properties of wood and wood based materials are strongly dependent on the properties of its fibres; i.e. the cell wall properties. The ability to characterize these in order to increase our understanding of structure-property relationships is thus highly important. This article gives a brief overview of the state of the art in experimental techniques to characterize the mechanical properties of wood at both the level of the single cell and that of the cell-wall. Challenges, opportunities, drawbacks and limitations of single fibre tensile tests and nanoindentation are discussed with respect to the wood material properties
Surface Curvature Differentially Regulates Stem Cell Migration and Differentiation via Altered Attachment Morphology and Nuclear Deformation
Signals from the microenvironment around a cell are known to influence cell behavior. Material properties, such as biochemical composition and substrate stiffness, are today accepted as significant regulators of stem cell fate. The knowledge of how cell behavior is influenced by 3D geometric cues is, however, strongly limited despite its potential relevance for the understanding of tissue regenerative processes and the design of biomaterials. Here, the role of surface curvature on the migratory and differentiation behavior of human mesenchymal stem cells (hMSCs) has been investigated on 3D surfaces with well-defined geometric features produced by stereolithography. Time lapse microscopy reveals a significant increase of cell migration speed on concave spherical compared to convex spherical structures and flat surfaces resulting from an upward-lift of the cell body due to cytoskeletal forces. On convex surfaces, cytoskeletal forces lead to substantial nuclear deformation, increase lamin-A levels and promote osteogenic differentiation. The findings of this study demonstrate a so far missing link between 3D surface curvature and hMSC behavior. This will not only help to better understand the role of extracellular matrix architecture in health and disease but also give new insights in how 3D geometries can be used as a cell-instructive material parameter in the field of biomaterial-guided tissue regeneration.Peer reviewe
Accelerated Growth Plate Mineralization and Foreshortened Proximal Limb Bones in Fetuin-A Knockout Mice
PMCID: PMC3473050This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Science Advances / Tensile forces drive a reversible fibroblast-to-myofibroblast transition during tissue growth in engineered clefts
Myofibroblasts orchestrate wound healing processes, and if they remain activated, they drive disease progression such as fibrosis and cancer. Besides growth factor signaling, the local extracellular matrix (ECM) and its mechanical properties are central regulators of these processes. It remains unknown whether transforming growth factor (TGF-) and tensile forces work synergistically in up-regulating the transition of fibroblasts into myofibroblasts and whether myofibroblasts undergo apoptosis or become deactivated by other means once tissue homeostasis is reached. We used three-dimensional microtissues grown in vitro from fibroblasts in macroscopically engineered clefts for several weeks and found that fibroblasts transitioned into myofibroblasts at the highly tensed growth front as the microtissue progressively closed the cleft, in analogy to closing a wound site. Proliferation was up-regulated at the growth front, and new highly stretched fibronectin fibers were deposited, as revealed by fibronectin fluorescence resonance energy transfer probes. As the tissue was growing, the ECM underneath matured into a collagen-rich tissue containing mostly fibroblasts instead of myofibroblasts, and the fibronectin fibers were under reduced tension. This correlated with a progressive rounding of cells from the growth front inward, with decreased smooth muscle actin expression, YAP nuclear translocation, and cell proliferation. Together, this suggests that the myofibroblast phenotype is stabilized at the growth front by tensile forces, even in the absence of endogenously supplemented TGF-, and reverts into a quiescent fibroblast phenotype already 10 m behind the growth front, thus giving rise to a myofibroblast-to-fibroblast transition. This is the hallmark of reaching prohealing homeostasis.(VLID)251031
Curvature in Biological Systems: Its quantification, Emergence and Implications Across the Scales
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology has been supported by numerous recent experimental and theoretical investigations in recent years. In this review, we first give a brief introduction to the key ideas of surface curvature in the context of biological systems and discuss the challenges that arise when measuring surface curvature. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, we address the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological and mechanical processes but that curvature acts also as a signal that co-determines these processes
Rubbing Powders : Direct Spectroscopic Observation of Triboinduced Oxygen Radical Formation in MgO Nanocube Ensembles
Powder compaction-induced surface chemistry in metal oxide nanocrystal ensembles is important for very diverse fields such as triboelectrics, tribocatalysts, surface abrasion, and cold sintering of ceramics. Using a range of spectroscopic techniques, we show that MgO nanocube powder compaction with uniaxial pressures that can be achieved by gentle manual rubbing or pressing (p ≥ 5 MPa) excites energetic electron-hole pairs and generates oxygen radicals at interfacial defect structures. While the identification of paramagnetic O- radicals and their adsorption complexes with O2 point to the emergence of hole centers, triboemitted electrons become scavenged by molecular oxygen to convert into adsorbed superoxide anions O2 - as measured by electron paramagnetic resonance (EPR). By means of complementary UV-photoexcitation experiments, we found that photon energies in the range between 3 and 6 eV produce essentially the same EPR spectroscopic fingerprints and optical absorption features. To provide insights into this effect, we performed density functional theory calculations to explore the energetics of charge separation involving the ionization of low-coordinated anions and surface-adsorbed O2 - radicals at points of contact. For all selected configurations, charge transfer is not spontaneous but requires an additional driving force. We propose that a plausible mechanism for oxygen radical formation is the generation of significant surface potential differences at points of contact under loading as a result of the highly inhomogeneous elastic deformations coupled with the flexoelectric effect
Influence of magnetic fields on magneto-aerotaxis
The response of cells to changes in their physico-chemical micro-environment is essential to their survival. For example, bacterial magnetotaxis uses the Earth's magnetic field together with chemical sensing to help microorganisms move towards favoured habitats. The studies of such complex responses are lacking a method that permits the simultaneous mapping of the chemical environment and the response of the organisms, and the ability to generate a controlled physiological magnetic field. We have thus developed a multi-modal microscopy platform that fulfils these requirements. Using simultaneous fluorescence and high-speed imaging in conjunction with diffusion and aerotactic models, we characterized the magneto-aerotaxis of Magnetospirillum gryphiswaldense. We assessed the influence of the magnetic field (orientation; strength) on the formation and the dynamic of a micro-aerotactic band (size, dynamic, position). As previously described by models of magnetotaxis, the application of a magnetic field pointing towards the anoxic zone of an oxygen gradient results in an enhanced aerotaxis even down to Earth's magnetic field strength. We found that neither a ten-fold increase of the field strength nor a tilt of 45° resulted in a significant change of the aerotactic efficiency. However, when the field strength is zeroed or when the field angle is tilted to 90°, the magneto-aerotaxis efficiency is drastically reduced. The classical model of magneto-aerotaxis assumes a response proportional to the cosine of the angle difference between the directions of the oxygen gradient and that of the magnetic field. Our experimental evidence however shows that this behaviour is more complex than assumed in this model, thus opening up new avenues for research
- …