84 research outputs found

    WISE/NEOWISE Observations of Comet 103P/Hartley 2

    Get PDF
    We report results based on mid-infrared photometry of comet 103P/Hartley 2 taken during 2010 May 4-13 (when the comet was at a heliocentric distance of 2.3 AU, and an observer distance of 2.0 AU) by the Wide-field Infrared Survey Explorer. Photometry of the coma at 22 μm and data from the University of Hawaii 2.2 m telescope obtained on 2010 May 22 provide constraints on the dust particle size distribution, d log n/d log m, yielding power-law slope values of alpha = –0.97 ± 0.10, steeper than that found for the inbound particle fluence during the Stardust encounter of comet 81P/Wild 2. The extracted nucleus signal at 12 μm is consistent with a body of average spherical radius of 0.6 ± 0.2 km (one standard deviation), assuming a beaming parameter of 1.2. The 4.6 μm band signal in excess of dust and nucleus reflected and thermal contributions may be attributed to carbon monoxide or carbon dioxide emission lines and provides limits and estimates of species production. Derived carbon dioxide coma production rates are 3.5(± 0.9) × 10^(24) molecules per second. Analyses of the trail signal present in the stacked image with an effective exposure time of 158.4 s yields optical-depth values near 9 × 10^(–10) at a delta mean anomaly of 0.2 deg trailing the comet nucleus, in both 12 and 22 μm bands. A minimum chi-squared analysis of the dust trail position yields a beta-parameter value of 1.0 × 10^(–4), consistent with a derived mean trail-grain diameter of 1.1/ρ cm for grains of ρ g cm^(–3) density. This leads to a total detected trail mass of at least 4 × 10^(10) ρ kg

    The Pan-STARRS Moving Object Processing System

    Full text link
    We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves > 99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a non-physical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains >99.5% efficient at detecting objects on a single night but drops to 80% efficiency at producing orbits for objects detected on multiple nights. This loss is primarily due to configurable MOPS processing limits that are not yet tuned for the Pan-STARRS1 mission. The core MOPS software package is the product of more than 15 person-years of software development and incorporates countless additional years of effort in third-party software to perform lower-level functions such as spatial searching or orbit determination. We describe the high-level design of MOPS and essential subcomponents, the suitability of MOPS for other survey programs, and suggest a road map for future MOPS development.Comment: 57 Pages, 26 Figures, 13 Table

    WISE/NEOWISE observations of Active Bodies in the Main Belt

    Get PDF
    We report results based on mid-infrared photometry of 5 active main belt objects (AMBOs) detected by the Wide-field Infrared Survey Explorer (WISE) spacecraft. Four of these bodies, P/2010 R2 (La Sagra), 133P/Elst-Pizarro, (596) Scheila, and 176P/LINEAR, showed no signs of activity at the time of the observations, allowing the WISE detections to place firm constraints on their diameters and albedos. Geometric albedos were in the range of a few percent, and on the order of other measured comet nuclei. P/2010 A2 was observed on April 2-3, 2010, three months after its peak activity. Photometry of the coma at 12 and 22 {\mu}m combined with ground-based visible-wavelength measurements provides constraints on the dust particle mass distribution (PMD), dlogn/dlogm, yielding power-law slope values of {\alpha} = -0.5 +/- 0.1. This PMD is considerably more shallow than that found for other comets, in particular inbound particle fluence during the Stardust encounter of comet 81P/Wild 2. It is similar to the PMD seen for 9P/Tempel 1 in the immediate aftermath of the Deep Impact experiment. Upper limits for CO2 & CO production are also provided for each AMBO and compared with revised production numbers for WISE observations of 103P/Hartley 2.Comment: 32 Pages, including 5 Figure

    Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation

    Get PDF
    Significance The Fe(II)- and 2-oxoglutarate (2OG)-dependent hypoxia-inducible transcription factor prolyl-hydroxylases play a central role in human oxygen sensing and are related to other prolyl-hydroxylases involved in eukaryotic collagen biosynthesis and ribosomal modification. The finding that a PHD-related prolyl-hydroxylase in Pseudomonas spp. regulates pyocyanin biosynthesis supports prokaryotic origins for the eukaryotic prolyl-hydroxylases. The identification of the switch I loop of elongation factor Tu (EF-Tu) as a Pseudomonas prolyl-hydroxylase domain containing protein (PPHD) substrate provides evidence of roles for 2OG oxygenases in both translational and transcriptional regulation. A structure of the PPHD:EF-Tu complex, the first to the authors' knowledge of a 2OG oxygenase with its intact protein substrate, reveals that major conformational changes occur in both PPHD and EF-Tu and will be useful in the design of new prolyl-hydroxylase inhibitors. </jats:p

    Determinants of enhanced vulnerability to coronavirus disease 2019 in UK patients with cancer: a European study

    Get PDF
    Despite high contagiousness and rapid spread, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to heterogeneous outcomes across affected nations. Within Europe (EU), the United Kingdom (UK) is the most severely affected country, with a death toll in excess of 100,000 as of January 2021. We aimed to compare the national impact of coronavirus disease 2019 (COVID-19) on the risk of death in UK patients with cancer versus those in continental EU. Methods: We performed a retrospective analysis of the OnCovid study database, a European registry of patients with cancer consecutively diagnosed with COVID-19 in 27 centres from 27th February to 10th September 2020. We analysed case fatality rates and risk of death at 30 days and 6 months stratified by region of origin (UK versus EU). We compared patient characteristics at baseline including oncological and COVID-19-specific therapy across UK and EU cohorts and evaluated the association of these factors with the risk of adverse outcomes in multivariable Cox regression models. Findings: Compared with EU (n = 924), UK patients (n = 468) were characterised by higher case fatality rates (40.38% versus 26.5%, p < 0.0001) and higher risk of death at 30 days (hazard ratio [HR], 1.64 [95% confidence interval {CI}, 1.36-1.99]) and 6 months after COVID-19 diagnosis (47.64% versus 33.33%; p < 0.0001; HR, 1.59 [95% CI, 1.33-1.88]). UK patients were more often men, were of older age and have more comorbidities than EU counterparts (p < 0.01). Receipt of anticancer therapy was lower in UK than in EU patients (p < 0.001). Despite equal proportions of complicated COVID-19, rates of intensive care admission and use of mechanical ventilation, UK patients with cancer were less likely to receive anti-COVID-19 therapies including corticosteroids, antivirals and interleukin-6 antagonists (p < 0.0001). Multivariable analyses adjusted for imbalanced prognostic factors confirmed the UK cohort to be characterised by worse risk of death at 30 days and 6 months, independent of the patient's age, gender, tumour stage and status; number of comorbidities; COVID-19 severity and receipt of anticancer and anti-COVID-19 therapy. Rates of permanent cessation of anticancer therapy after COVID-19 were similar in the UK and EU cohorts. Interpretation: UK patients with cancer have been more severely impacted by the unfolding of the COVID-19 pandemic despite societal risk mitigation factors and rapid deferral of anticancer therapy. The increased frailty of UK patients with cancer highlights high-risk groups that should be prioritised for anti-SARS-CoV-2 vaccination. Continued evaluation of long-term outcomes is warranted

    Apophis planetary defense campaign

    Get PDF
    We describe results of a planetary defense exercise conducted during the close approach to Earth by the near-Earth asteroid (99942) Apophis during 2020 December–2021 March. The planetary defense community has been conducting observational campaigns since 2017 to test the operational readiness of the global planetary defense capabilities. These community-led global exercises were carried out with the support of NASA's Planetary Defense Coordination Office and the International Asteroid Warning Network. The Apophis campaign is the third in our series of planetary defense exercises. The goal of this campaign was to recover, track, and characterize Apophis as a potential impactor to exercise the planetary defense system including observations, hypothetical risk assessment and risk prediction, and hazard communication. Based on the campaign results, we present lessons learned about our ability to observe and model a potential impactor. Data products derived from astrometric observations were available for inclusion in our risk assessment model almost immediately, allowing real-time updates to the impact probability calculation and possible impact locations. An early NEOWISE diameter measurement provided a significant improvement in the uncertainty on the range of hypothetical impact outcomes. The availability of different characterization methods such as photometry, spectroscopy, and radar provided robustness to our ability to assess the potential impact risk

    Defining murine organogenesis at single-cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation.

    Get PDF
    During gastrulation, cell types from all three germ layers are specified and the basic body plan is established 1 . However, molecular analysis of this key developmental stage has been hampered by limited cell numbers and a paucity of markers. Single-cell RNA sequencing circumvents these problems, but has so far been limited to specific organ systems 2 . Here, we report single-cell transcriptomic characterization of >20,000 cells immediately following gastrulation at E8.25 of mouse development. We identify 20 major cell types, which frequently contain substructure, including three distinct signatures in early foregut cells. Pseudo-space ordering of somitic progenitor cells identifies dynamic waves of transcription and candidate regulators, which are validated by molecular characterization of spatially resolved regions of the embryo. Within the endothelial population, cells that transition from haemogenic endothelial to erythro-myeloid progenitors specifically express Alox5 and its co-factor Alox5ap, which control leukotriene production. Functional assays using mouse embryonic stem cells demonstrate that leukotrienes promote haematopoietic progenitor cell generation. Thus, this comprehensive single-cell map can be exploited to reveal previously unrecognized pathways that contribute to tissue development

    The recovery of European freshwater biodiversity has come to a halt

    Get PDF
    Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.N. Kaffenberger helped with initial data compilation. Funding for authors and data collection and processing was provided by the EU Horizon 2020 project eLTER PLUS (grant agreement no. 871128); the German Federal Ministry of Education and Research (BMBF; 033W034A); the German Research Foundation (DFG FZT 118, 202548816); Czech Republic project no. P505-20-17305S; the Leibniz Competition (J45/2018, P74/2018); the Spanish Ministerio de Economía, Industria y Competitividad—Agencia Estatal de Investigación and the European Regional Development Fund (MECODISPER project CTM 2017-89295-P); Ramón y Cajal contracts and the project funded by the Spanish Ministry of Science and Innovation (RYC2019-027446-I, RYC2020-029829-I, PID2020-115830GB-100); the Danish Environment Agency; the Norwegian Environment Agency; SOMINCOR—Lundin mining & FCT—Fundação para a Ciência e Tecnologia, Portugal; the Swedish University of Agricultural Sciences; the Swiss National Science Foundation (grant PP00P3_179089); the EU LIFE programme (DIVAQUA project, LIFE18 NAT/ES/000121); the UK Natural Environment Research Council (GLiTRS project NE/V006886/1 and NE/R016429/1 as part of the UK-SCAPE programme); the Autonomous Province of Bolzano (Italy); and the Estonian Research Council (grant no. PRG1266), Estonian National Program ‘Humanitarian and natural science collections’. The Environment Agency of England, the Scottish Environmental Protection Agency and Natural Resources Wales provided publicly available data. We acknowledge the members of the Flanders Environment Agency for providing data. This article is a contribution of the Alliance for Freshwater Life (www.allianceforfreshwaterlife.org).Peer reviewe

    Emulating the Logic of Monoterpenoid Alkaloid Biogenesis to Access a Skeletally Diverse Chemical Library

    No full text
    We have developed a synthetic strategy that mimics the diversity-generating power of monoterpenoid indole alkaloid biosynthesis. Our general approach goes beyond diversification of a single natural product-like substructure and enables production of a highly diverse collection of small molecules. The reaction sequence begins with rapid and highly modular assembly of the tetracyclic indoloquinolizidine core, which can be chemoselectively processed into several additional skeletally diverse structural frameworks. The general utility of this approach was demonstrated by parallel synthesis of two representative chemical libraries containing 847 compounds with favorable physicochemical properties to enable its subsequent broad pharmacological evaluation
    corecore