14 research outputs found
Vascular Endothelial-Cadherin Regulates Cytoskeletal Tension, Cell Spreading, and Focal Adhesions by Stimulating RhoA
Changes in vascular endothelial (VE)-cadherin–mediated cell-cell adhesion and integrin-mediated cell-matrix adhesion coordinate to affect the physical and mechanical rearrangements of the endothelium, although the mechanisms for such cross talk remain undefined. Herein, we describe the regulation of focal adhesion formation and cytoskeletal tension by intercellular VE-cadherin engagement, and the molecular mechanism by which this occurs. Increasing the density of endothelial cells to increase cell-cell contact decreased focal adhesions by decreasing cell spreading. This contact inhibition of cell spreading was blocked by disrupting VE-cadherin engagement with an adenovirus encoding dominant negative VE-cadherin. When changes in cell spreading were prevented by culturing cells on a micropatterned substrate, VE-cadherin–mediated cell-cell contact paradoxically increased focal adhesion formation. We show that VE-cadherin engagement mediates each of these effects by inducing both a transient and sustained activation of RhoA. Both the increase and decrease in cell-matrix adhesion were blocked by disrupting intracellular tension and signaling through the Rho-ROCK pathway. In all, these findings demonstrate that VE-cadherin signals through RhoA and the actin cytoskeleton to cross talk with cell-matrix adhesion and thereby define a novel pathway by which cell-cell contact alters the global mechanical and functional state of cells
Cells lying on a bed of microneedles: An approach to isolate mechanical force
We describe an approach to manipulate and measure mechanical interactions between cells and their underlying substrates by using microfabricated arrays of elastomeric, microneedle-like posts. By controlling the geometry of the posts, we varied the compliance of the substrate while holding other surface properties constant. Cells attached to, spread across, and deflected multiple posts. The deflections of the posts occurred independently of neighboring posts and, therefore, directly reported the subcellular distribution of traction forces. We report two classes of force-supporting adhesions that exhibit distinct force–size relationships. Force increased with size of adhesions for adhesions larger than 1 μm(2), whereas no such correlation existed for smaller adhesions. By controlling cell adhesion on these micromechanical sensors, we showed that cell morphology regulates the magnitude of traction force generated by cells. Cells that were prevented from spreading and flattening against the substrate did not contract in response to stimulation by serum or lysophosphatidic acid, whereas spread cells did. Contractility in the unspread cells was rescued by expression of constitutively active RhoA. Together, these findings demonstrate a coordination of biochemical and mechanical signals to regulate cell adhesion and mechanics, and they introduce the use of arrays of mechanically isolated sensors to manipulate and measure the mechanical interactions of cells