65 research outputs found

    Patterns of Structural Response to Simulated Partial Harvesting of Boreal Mixedwood Stands

    Get PDF
    Partial harvesting has been proposed as an approach for maintaining late-successional structure within managed boreal mixedwood stands. Although little long-term data is available to evaluate its effects in this stand type, recent advances in individual tree-based stand modeling provide an opportunity to simulate post-harvest stand development following different retention harvests. Using the stand dynamics model SORTIE-ND, we examined 40-year patterns of structural change in response to different intensities (30%, 50%, and 70% removal) and spatial patterns (uniform, small patch, large patch) of harvesting in aspen-dominated mixedwood stands. We assessed structural dynamics through a suite of variables representing the distribution of tree sizes, understory development, regeneration, standing and fallen dead wood characteristics, and within-stand heterogeneity. Partial harvesting induced a reciprocal increase in understory and downed woody debris development and decrease in overstory structure over the first 20 years after harvest, with this effect reversing after 25 years as harvest-induced regeneration reached the canopy. Densities of large trees and snags were reduced by harvesting, and did not recover to pre-harvest levels within 40 years. Harvesting promoted within-stand heterogeneity in the short and long term, and also produced transient increases in early-decay downed woody debris and ground exposure. These effects largely increased in proportion to harvest intensity. Although spatial pattern was of lesser importance than intensity, aggregated harvests induced somewhat less pronounced impacts on structure (with the exception of heterogeneity) than dispersed harvesting. These simulation results can form a basis for more detailed hypotheses regarding maintenance of late-successional stand structure and function through partial harvesting. Such hypotheses may in turn be translated into real-world silvicultural experiments to be evaluated, refined, and either accepted or rejected within an adaptive management framework

    A critique of general allometry-inspired models for estimating forest carbon density from airborne LiDAR.

    Get PDF
    There is currently much interest in developing general approaches for mapping forest aboveground carbon density using structural information contained in airborne LiDAR data. The most widely utilized model in tropical forests assumes that aboveground carbon density is a compound power function of top of canopy height (a metric easily derived from LiDAR), basal area and wood density. Here we derive the model in terms of the geometry of individual tree crowns within forest stands, showing how scaling exponents in the aboveground carbon density model arise from the height-diameter (H-D) and projected crown area-diameter (C-D) allometries of individual trees. We show that a power function relationship emerges when the C-D scaling exponent is close to 2, or when tree diameters follow a Weibull distribution (or other specific distributions) and are invariant across the landscape. In addition, basal area must be closely correlated with canopy height for the approach to work. The efficacy of the model was explored for a managed uneven-aged temperate forest in Ontario, Canada within which stands dominated by sugar maple (Acer saccharum Marsh.) and mixed stands were identified. A much poorer goodness-of-fit was obtained than previously reported for tropical forests (R2 = 0.29 vs. about 0.83). Explanations for the poor predictive power on the model include: (1) basal area was only weakly correlated with top canopy height; (2) tree size distributions varied considerably across the landscape; (3) the allometry exponents are affected by variation in species composition arising from timber management and soil conditions; and (4) the C-D allometric power function was far from 2 (1.28). We conclude that landscape heterogeneity in forest structure and tree allometry reduces the accuracy of general power-function models for predicting aboveground carbon density in managed forests. More studies in different forest types are needed to understand the situations in which power functions of LiDAR height are appropriate for modelling forest carbon stocks

    Arabidopsis MKS1 Is Involved in Basal Immunity and Requires an Intact N-terminal Domain for Proper Function

    Get PDF
    Innate immune signaling pathways in animals and plants are regulated by mitogen-activated protein kinase (MAPK) cascades. MAP kinase 4 (MPK4) functions downstream of innate immune receptors via a nuclear substrate MKS1 to regulate the activity of the WRKY33 transcription factor, which in turn controls the production of anti-microbial phytoalexins.We investigate the role of MKS1 in basal resistance and the importance of its N- and C-terminal domains for MKS1 function. We used the information that mks1 loss-of-function partially suppresses the mpk4 loss-of-function phenotype, and that transgenic expression of functional MKS1 in mpk4/mks1 double mutants reverted the mpk4 dwarf phenotype. Transformation of mks1/mpk4 with mutant versions of MKS1 constructs showed that a single amino acid substitution in a putative MAP kinase docking domain, MKS1-L32A, or a truncated MKS1 version unable to interact with WRKY33, were deficient in reverting the double mutant to the mpk4 phenotype. These results demonstrate functional requirement in MKS1 for the interaction with MPK4 and WRKY33. In addition, nuclear localization of MKS1 was shown to depend on an intact N-terminal domain. Furthermore, loss-of-function mks1 mutants exhibited increased susceptibility to strains of Pseudomonas syringae and Hyaloperonospora arabidopsidis, indicating that MKS1 plays a role in basal defense responses.Taken together, our results indicate that MKS1 function and subcellular location requires an intact N-terminus important for both MPK4 and WRKY33 interactions

    Structural changes and potential vertebrate responses following simulated partial harvesting of boreal mixedwood stands

    Get PDF
    Partial harvesting, where different numbers and arrangements of live trees are retained in forest stands, has been proposed for maintaining late-successional structure and associated vertebrate species within managed boreal forests. Using the stand dynamics model SORTIE-ND, we examined 80-year patterns of structural change in response to different intensities (30–70% basal area removal) and spatial patterns (22–273m2 mean patch size) of harvesting. We also applied habitat models for seven late-successional vertebrates to the structural conditions present after harvesting to assess potential species responses. Partial harvesting increased understory and downed woody debris (DWD) cover and decreased overstory structure for the first 25 years after harvest, in comparison to unharvested stands, with this effect subsequently reversing as harvest-induced regeneration reached the canopy. Although harvesting enhanced long-term structural development in this regard, large trees, large snags, and largeDWDall remained below unharvested levels throughout the simulation period. Harvesting also produced transient increases in early-decayDWDand ground exposure. Most changes in structural attributes increased in proportion to harvest intensity, but structural differencesamongharvest patterns were generally small. Dispersed harvesting induced somewhat less pronounced decreases in vertical structure, and produced more post-harvest slash, than aggregated harvesting. All seven vertebrate species decreased in abundance as harvest intensity increased from 30 to 70%. In comparison to their pre-harvest abundances in old stands, vertebrates associated with DWD (redback salamander, marten, red-backed vole) showed neutral or positive responses at one or more harvest intensities, whereas those associated with large trees and snags (brown creeper, flying squirrel) consistently exhibited substantial adverse impacts

    Research Exploring Physical Activity in Care Homes (REACH): study protocol for a randomised controlled trial

    Get PDF
    Background: As life expectancy increases and the number of older people, particularly those aged 85 years and over, expands there is an increase in demand for long-term care. A large proportion of people in a care home setting spend most of their time sedentary, and this is one of the leading preventable causes of death. Encouraging residents to engage in more physical activity could deliver benefits in terms of physical and psychological health, and quality of life. This study is the final stage of a programme of research to develop and preliminarily test an evidence-based intervention designed to enhance opportunities for movement amongst care home residents, thereby increasing levels of physical activity. Methods/design: This is a cluster randomised feasibility trial, aiming to recruit at least 8–12 residents at each of 12 residential care homes across Yorkshire, UK. Care homes will be randomly allocated on a 1:1 basis to receive either the intervention alongside usual care, or to continue to provide usual care alone. Assessment will be undertaken with participating residents at baseline (prior to care home randomisation) and at 3, 6, and 9 months post-randomisation. Data relating to changes in physical activity, physical function, level of cognitive impairment, mood, perceived health and wellbeing, and quality of life will be collected. Data at the level of the home will also be collected and will include staff experience of care, and changes in the numbers and types of adverse events residents experience (for example, hospital admissions, falls). Details of National Health Service (NHS) usage will be collected to inform the economic analysis. An embedded process evaluation will obtain information to test out the theory of change underpinning the intervention and its acceptability to staff and residents. Discussion: This feasibility trial with embedded process evaluation and collection of health economic data will allow us to undertake detailed feasibility work to inform a future large-scale trial. It will provide valuable information to inform research procedures in this important but challenging area

    Does Habitual Physical Activity Increase the Sensitivity of the Appetite Control System? A Systematic Review.

    Get PDF
    BACKGROUND: It has been proposed that habitual physical activity improves appetite control; however, the evidence has never been systematically reviewed. OBJECTIVE: To examine whether appetite control (e.g. subjective appetite, appetite-related peptides, food intake) differs according to levels of physical activity. DATA SOURCES: Medline, Embase and SPORTDiscus were searched for articles published between 1996 and 2015, using keywords pertaining to physical activity, appetite, food intake and appetite-related peptides. STUDY SELECTION: Articles were included if they involved healthy non-smoking adults (aged 18-64 years) participating in cross-sectional studies examining appetite control in active and inactive individuals; or before and after exercise training in previously inactive individuals. STUDY APPRAISAL AND SYNTHESIS: Of 77 full-text articles assessed, 28 studies (14 cross-sectional; 14 exercise training) met the inclusion criteria. RESULTS: Appetite sensations and absolute energy intake did not differ consistently across studies. Active individuals had a greater ability to compensate for high-energy preloads through reductions in energy intake, in comparison with inactive controls. When physical activity level was graded across cross-sectional studies (low, medium, high, very high), a significant curvilinear effect on energy intake (z-scores) was observed. LIMITATIONS: Methodological issues existed concerning the small number of studies, lack of objective quantification of food intake, and various definitions used to define active and inactive individuals. CONCLUSION: Habitually active individuals showed improved compensation for the energy density of foods, but no consistent differences in appetite or absolute energy intake, in comparison with inactive individuals. This review supports a J-shaped relationship between physical activity level and energy intake. Further studies are required to confirm these findings. PROSPERO REGISTRATION NUMBER: CRD42015019696

    The health outcomes and physical activity in preschoolers (HOPP) study: rationale and design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The early years are the period of growth for which we know the least about the impact of physical activity. In contrast, we know that more than 90 % of school-aged Canadian children, for example, are not meeting physical activity recommendations. Such an activity crisis is a major contributor to recent trends in childhood obesity, to which preschoolers are not immune. The World Health Organization estimated that more than 42 million children under the age of 5 years were overweight world-wide in 2010. If an activity crisis exists during the preschool years, we should also be concerned about its broader impact on health. Unfortunately, the relationship between physical activity and health during the early years is poorly understood. The goal of the Health Outcomes and Physical activity in Preschoolers (HOPP) study is to describe how the prevalence and patterns of physical activity in preschoolers are associated with indices of health.</p> <p>Methods</p> <p>The HOPP study is a prospective cohort study. We aim to recruit 400 3- to 5-year-old children (equal number of boys and girls) and test them once per year for 3 years. Each annual assessment involves 2 laboratory visits and 7 consecutive days of physical activity monitoring with protocols developed in our pilot work. At visit 1, we assess body composition, aerobic fitness, short-term muscle power, motor skills, and have the parents complete a series of questionnaires related to their child’s physical activity, health-related quality of life and general behaviour. Over 7 consecutive days each child wears an accelerometer on his/her waist to objectively monitor physical activity. The accelerometer is programmed to record movement every 3 s, which is needed to accurately capture the intensity of physical activity. At visit 2, we assess vascular structure and function using ultrasound. To assess the associations between physical activity and health outcomes, our primary analysis will involve mixed-effects models for longitudinal analyses.</p> <p>Discussion</p> <p>The HOPP study addresses a significant gap in health research and our findings will hold the potential to shape public health policy for active living during the early years.</p
    corecore