6,647 research outputs found

    Spotlight on Jewel McClanahan: Responsibilities Great, Board Chairman Says

    Get PDF

    John G. Morgan in a Faculty Recital

    Get PDF
    This is the program for the faculty recital featuring baritone John. G. Morgan. Mr. Morgan was assisted by William E. Trantham on the piano. This recital took place on February 22, 1968, in Mitchell Hall Auditorium

    Carlow Virus, a 2002 GII.4 variant Norovirus strain from Ireland

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Noroviruses are the leading cause of infectious non-bacterial gastroenteritis in Ireland (population 4 million). Due to the number of outbreaks, its massive impact on the Irish health service and its seasonality, Norovirus has gained public notoriety as The Winter Vomiting Bug. The increase in cases in Ireland in the 2002–2003 season coincided with the emergence of two new Genogroup II genotype 4 variant clusters of Norovirus worldwide.</p> <p>Results</p> <p>Little research has been done on the epidemiology or molecular biology of Norovirus strains in Ireland. In an effort to combat this discrepancy, we cloned a full length human norovirus genome as a cDNA clone (J3) which can produce full length transcripts in vitro. A polymerase mutant cDNA clone (X1), in addition to a sub genomic cDNA clone (1A) were produced for use in future work.</p> <p>Carlow virus (Hu/NoV/GII/Carlow/2002/Ire) genome is 7559 nts in length, excluding the 3-end poly A tail and represents the first Norovirus strain from Ireland to be sequenced.</p> <p>Conclusion</p> <p>Carlow virus is a member of the Farmington Hills variant cluster of Genogroup II genotype 4 noroviruses.</p

    Development of Ground-testable Phase Fresnel Lenses in Silicon

    Full text link
    Diffractive/refractive optics, such as Phase Fresnel Lenses (PFL's), offer the potential to achieve excellent imaging performance in the x-ray and gamma-ray photon regimes. In principle, the angular resolution obtained with these devices can be diffraction limited. Furthermore, improvements in signal sensitivity can be achieved as virtually the entire flux incident on a lens can be concentrated onto a small detector area. In order to verify experimentally the imaging performance, we have fabricated PFL's in silicon using gray-scale lithography to produce the required Fresnel profile. These devices are to be evaluated in the recently constructed 600-meter x-ray interferometry testbed at NASA/GSFC. Profile measurements of the Fresnel structures in fabricated PFL's have been performed and have been used to obtain initial characterization of the expected PFL imaging efficiencies.Comment: Presented at GammaWave05: "Focusing Telescopes in Nuclear Astrophysics", Bonifacio, Corsica, September 2005, to be published in Experimental Astronomy, 8 pages, 3 figure

    Microspectrophotometric Analysis of Yellow Polyester Fiber Dye Loadings with Chemometric Techniques

    Get PDF
    Microspectrophotometry is a quick, accurate, and reproducible method to compare colored fibers for forensic purposes. Applying chemometric techniques to spectroscopic data can provide valuable information, especially when looking at a complex dataset. In this study, background subtracted and normalized visible spectra from ten yellow polyester exemplars dyed with different concentrations of the same dye ranging from 0.1% to 3.5% (w/w), were analyzed by agglomerative hierarchical clustering (AHC), principal component analysis (PCA), and discriminant analysis (DA). Systematic changes in the wavelength of maximum absorption, peak shape and signal-to-background ratio were noted as dye loading increased. In general, classifying the samples into ten groups (one for each exemplar) had poor accuracy (i.e., 51%). However, classification was much more accurate (i.e., 96%) using three classes of fibers that were identified by AHC as having low (0.10–0.20 wt%), medium (0.40–0.75 wt%), and high (1.5–3.5 wt%) dye loadings. An external validation with additional fibers and data generated by independent analysts confirmed these findings. Lastly, it was also possible to discriminating pairs of exemplars with small differences in dye loadings as a simulation of questioned (Q) versus known (K) comparisons

    Improved Constraints on the Preferential Heating and Acceleration of Oxygen Ions in the Extended Solar Corona

    Full text link
    We present a detailed analysis of oxygen ion velocity distributions in the extended solar corona, based on observations made with the Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. Polar coronal holes at solar minimum are known to exhibit broad line widths and unusual intensity ratios of the O VI 1032, 1037 emission line doublet. The traditional interpretation of these features has been that oxygen ions have a strong temperature anisotropy, with the temperature perpendicular to the magnetic field being much larger than the temperature parallel to the field. However, recent work by Raouafi and Solanki suggested that it may be possible to model the observations using an isotropic velocity distribution. In this paper we analyze an expanded data set to show that the original interpretation of an anisotropic distribution is the only one that is fully consistent with the observations. It is necessary to search the full range of ion plasma parameters to determine the values with the highest probability of agreement with the UVCS data. The derived ion outflow speeds and perpendicular kinetic temperatures are consistent with earlier results, and there continues to be strong evidence for preferential ion heating and acceleration with respect to hydrogen. At heliocentric heights above 2.1 solar radii, every UVCS data point is more consistent with an anisotropic distribution than with an isotropic distribution. At heights above 3 solar radii, the exact probability of isotropy depends on the electron density chosen to simulate the line-of-sight distribution of O VI emissivity. (abridged abstract)Comment: 19 pages (emulateapj style), 13 figures, ApJ, in press (v. 679; May 20, 2008

    The Yellowstone Hotspot, Greater Yellowstone Ecosystem, and Human Geography

    Get PDF
    Active geologic processes associated with the Yellowstone hotspot are fundamental in shaping the landscapes of the greater Yellowstone ecosystem (GYE), a high volcanic plateau flanked by a crescent of still higher mountainous terrain. The processes associated with the Yellowstone hotspot are volcanism, faulting, and uplift and are observed in the geology at the surface. We attribute the driving forces responsible for the northeastward progression of these processes to a thermal plume rising through the Earth’s mantle into the base of the southwest-moving North American plate. This progression began 16 million years ago (Ma) near the Nevada-Oregon border and arrived at Yellowstone about 2 Ma. Before arrival of the hotspot, an older landscape existed, particularly mountains created during the Laramide orogeny about 70–50 Ma and volcanic terrain formed by Absaroka andesitic volcanism mostly between 50–45 Ma. These landscapes were more muted than the present, hotspot-modified landscape because the Laramide-age mountains had worn down and an erosion surface of low relief had developed on the Absaroka volcanic terrain. The Yellowstone Plateau was built by hotspot volcanism of rhyolitic lavas and caldera-forming rhyolite tuffs (ignimbrites). Streams eroding back into the edges of this plateau have created scenic waterfalls and canyons such as the Grand Canyon of the Yellowstone and Lewis Canyon. Rhyolite is poor in plant nutrients and forms sandy, well-drained soils that support the monotonous, fire-adapted lodgepole pine forests of the Yellowstone Plateau. Non-rhyolitic rocks surround this plateau and sustain more varied vegetation, including spruce, fir, and whitebark pine forests broken by grassy meadows. Heat from the hotspot rises upward and drives Yellowstone’s famed geysers, hot springs, and mudpots. These thermal waters are home to specialized, primitive ecosystems, rich in algae and bacteria. The rock alteration associated with hydrothermal systems creates the bright colors of Yellowstone’s Grand Canyon. Basin-and-range-style faulting has accompanied migration of the hotspot to Yellowstone and formed the linear mountains and valleys that occur north and south of the hotspot track, which is the present-day eastern Snake River Plain. High rates of basin-and-range faulting occurred adjacent to the migrating Yellowstone hotspot, creating distinctive landscapes within the GYE such as the Teton Range/Jackson Hole, with characteristic rugged, forested ranges and adjacent flat-floored grassy valleys. The difference in altitude between the mountains and valleys provides a topographic gradient in which vegetation maturation advances with altitude; animal-migration patterns also follow this trend. The valleys provide natural meadows, agricultural land, town sites, and corridors for roads. Uplift of the GYE by as much as 1 km (3,000 ft) during the last 5 million years has resulted in ongoing erosion of deep, steep-walled valleys. Many prominent ecological characteristics of Yellowstone derive from this hotspot-induced uplift, including the moderate- to high- altitude terrain and associated cool temperatures and deep snowfall. Modern and Pleistocene climate and associated vegetation patterns strongly relate to the topography created by the hotspot and its track along the eastern Snake River Plain. Winter air masses from the moist northern Pacific Ocean traverse the topographic low of the Snake River Plain to where orographic rise onto the Yellowstone Plateau and adjacent mountains produces deep snow. A winter precipitation shadow forms on the lee (eastern) sides of the GYE. During Pleistocene glacial times, this moisture conduit provided by the hotspot-track-produced ice-age glaciers that covered the core of the present GYE. These glaciers sculpted bedrock and produced glacial moraines that are both forested and unforested, sand and gravel of ice-marginal streams and outwash gravels that are commonly covered with sagebrush-grassland, and silty lake sediments that are commonly covered by lush grassland such as Hayden Valley. The effects of the Yellowstone hotspot also profoundly shaped the human history in the GYE. Uplift associated with the hotspot elevates the GYE to form the Continental Divide, and streams drain radially outward like spokes from a hub. Inhabitants of the GYE 12,000–10,000 years ago, as well as more recent inhabitants, followed the seasonal green-up of plants and migrating animals up into the mountain areas. During European immigration, people settled around Yellowstone in the lower parts of the drainages and established roads, irrigation systems, and cultural associations. The core Yellowstone highland is too harsh for agriculture and inhospitable to people in the winter. Beyond this core, urban and rural communities exist in valleys and are separated by upland areas. The partitioning inhibits any physical connection of communities, which in turn complicates pursuit of common interests across the whole GYE. Settlements thus geographically isolated evolved as diverse, independent communities

    Decoupling Interrupts From Virtual Machines in Smalltalk

    Full text link
    Architecture must work. Given the trends in client-server epistemologies, statisticians dubiously note the evaluation of e-commerce. WIN, our new solution for introspective communication, is the solution to all of these problems

    Astrocyte to spiking neuron communication using Networks-on-Chip ring topology

    Get PDF
    • …
    corecore