We present a detailed analysis of oxygen ion velocity distributions in the
extended solar corona, based on observations made with the Ultraviolet
Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. Polar coronal holes at
solar minimum are known to exhibit broad line widths and unusual intensity
ratios of the O VI 1032, 1037 emission line doublet. The traditional
interpretation of these features has been that oxygen ions have a strong
temperature anisotropy, with the temperature perpendicular to the magnetic
field being much larger than the temperature parallel to the field. However,
recent work by Raouafi and Solanki suggested that it may be possible to model
the observations using an isotropic velocity distribution. In this paper we
analyze an expanded data set to show that the original interpretation of an
anisotropic distribution is the only one that is fully consistent with the
observations. It is necessary to search the full range of ion plasma parameters
to determine the values with the highest probability of agreement with the UVCS
data. The derived ion outflow speeds and perpendicular kinetic temperatures are
consistent with earlier results, and there continues to be strong evidence for
preferential ion heating and acceleration with respect to hydrogen. At
heliocentric heights above 2.1 solar radii, every UVCS data point is more
consistent with an anisotropic distribution than with an isotropic
distribution. At heights above 3 solar radii, the exact probability of isotropy
depends on the electron density chosen to simulate the line-of-sight
distribution of O VI emissivity. (abridged abstract)Comment: 19 pages (emulateapj style), 13 figures, ApJ, in press (v. 679; May
20, 2008