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Abstract. Microspectrophotometry is a quick, accurate, and reproducible method to compare colored 

fibers for forensic purposes. Applying chemometric techniques to spectroscopic data can provide valuable 

information, especially when looking at a complex dataset. In this study, background subtracted and 

normalized visible spectra from ten yellow polyester exemplars dyed with different concentrations of the 

same dye ranging from 0.1-3.5% (w/w), were analyzed by agglomerative hierarchical clustering (AHC), 

principal component analysis (PCA), and discriminant analysis (DA). Systematic changes in the 

wavelength of maximum absorption, peak shape and signal-to-background ratio were noted as dye 

loading increased.  In general, classifying the samples into ten groups (one for each exemplar) had poor 

accuracy (i.e., 51%).  However, classification was much more accurate (i.e., 96%) using three classes of 

fibers that were identified by AHC as having low (0.10 – 0.20 wt%), medium (0.40 – 0.75 wt%), and high 

(1.5 – 3.5 wt%) dye loadings. An external validation with additional fibers and data generated by 

independent analysts confirmed these findings.  Lastly, it was also possible to discriminating pairs of 

exemplars with small differences in dye loadings as a simulation of questioned (Q) versus known (K) 

comparisons. 

Keywords: microspectrophotometry; forensic science; fibers; polyester; dye loading; multivariate 

statistics. 
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Introduction. The Locard Exchange Principle states that when two objects come into contact, there is 

always a transfer of material.1 This principle is especially relevant to trace evidence involving textile 

fibers. Textile fibers can be identified and compared based on their macroscopic and microscopic 

characteristics, optical characteristics, chemical composition, and color.1,2 In the comparison of 

transferred fibers during violent crimes, the fiber color is a very important point of comparison. 

Color comparisons by eye are subjective and not always discriminating for fibers with similar dye colors. 

Spectral comparisons by UV/visible microspectrophotometry (MSP) are valuable in transferred fiber 

cases because the technique provides quick, non-destructive, and objective color comparisons for dyed 

fibers. Microspectrophotometry can discriminate between two colored fibers that are visually similar 

based upon the different chromophores in the dye’s molecular structure.3-7 Visual comparison of spectra is 

helpful, but can become difficult in comparisons of fibers that have the same dye composition, but 

different concentrations of individual dyes. Comparisons of this nature could be of importance for 

discriminating dyed fibers from the same manufacturer but different dye loadings or fibers that differ in 

the extent to which they have faded/photobleached. UV/visible spectra of textile fibers are dominated by 

the dyes present and tend to have broad peaks with few distinctive features to aid visual comparisons. 

Common analytical techniques employed for dye analysis include thin-layer chromatography (TLC),8,9 

liquid chromatography-mass spectrometry (LC-MS),10,11 and capillary electrophoresis (CE).12 All of these 

techniques are destructive to the sample, however. A detailed discussion of forensic textile fiber 

examination techniques is found in Robertson and Grieve13 and Houck.14 

Multivariate statistics uses measurements on multiple variables (e.g., absorbances taken over a specified 

wavelength range) to identify patterns and groupings from large complex datasets more consistently than 

is possible by visual examination alone. We apply three techniques for analysis of colored fibers: 

agglomerative hierarchical clustering (AHC), principal component analysis (PCA), and discriminant 

analysis (DA). AHC groups samples based upon their relative similarity/dissimilarity, which is often 

expressed as a multivariate Euclidean distance.15 An initial understanding of the natural groupings that 
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may be present in a dataset can be obtained from AHC. PCA is an unsupervised approach that reduces the 

dimensionality of the dataset by finding a smaller number of latent variables that explain maximum 

variance with linear combinations of the original variables (principal components, or PCs).15 If most of 

the variation can be explained in the first few PCs, a plot of the data projected on the PCs may enable 

visualization of grouping relationships. On the other hand, discriminant analysis is a supervised approach. 

The known group membership of all spectra is employed to derive linear combinations of variables 

(canonical variates, CVs) that maximize the ratio of between-group variability to within-group variability. 

DA requires the data matrix to have more samples than features, which dimensionality reduction by PCA 

achieves.16 DA generates a model that best discriminates the assigned groups in the original data, and 

which can predict the classification of new samples using the established model. Multivariate statistics 

have been applied to several relevant evidence types, including dyes,17 inks,18 automotive paint,19 

electrical tape,20 and fire debris.21 

The goal of our present work was to discriminate between different yellow polyester fiber visible spectra 

based solely upon their dye loadings using multivariate statistics. A dye loading is the concentration of a 

dye, usually in weight percent, applied to a fiber. Research has shown that visually similar yellow 

polyester fibers with different dye compositions can be discriminated based on PCA and DA of their 

UV/visible spectra.7 However, no one has determined if fibers dyed with the same dye, but different dye 

loadings, can be reliably discriminated by their spectra alone using a chemometric approach. Being able 

to discriminate between dye loadings could provide a higher level of discriminating power to forensic 

fiber examiners in casework. 

Materials and Methods. A large collection of textile fibers donated from textile companies to the 

University of South Carolina (Columbia, SC) was searched for a set of fibers with the same base polymer, 

fiber dye, cross section and thickness.  This resulted in a sample set of ten yellow polyester exemplars 

dyed with various amounts of Dianix Yellow 5-6G (Disperse Yellow 114) dye.  In general, polyester 
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fibers are among the most common synthetic fibers found in casework, however, target fiber studies have 

shown that coincidental matches to specific polyester fiber types are very rare. 

Preliminary measurements using a Leica DM EP PLM (Leica Microsystems, Buffalo Grove, IL) and a 

Perkin Elmer Spectrum One FT-IR spectrometer with a universal ATR sampling accessory (Perkin Elmer, 

Waltham, MA) were performed to confirm that all of the polyester fibers had round cross-sections with 

similar diameters (20-27.5 μm). Cargille oils (R.P. Cargille Laboratories, Cedar Grove, NJ) were used to 

determine refractive indices by PLM. Michél-Levy charts were used to determine birefringence values. 

FT-IR spectra were acquired, based on averaging sixteen scans at a resolution of 4.00 cm-1, and recorded 

in percent transmittance over the wavenumber range of 4000-650 cm-1.  

Table I shows the amount of dye applied, in weight percent, to each exemplar and the naming system 

employed for the study. Ten fibers from each exemplar were removed and mounted on glass microscope 

slides using Permount (Fisher Scientific, Fairlawn, NJ) mounting media. A QDI 2000 

microspectrophotometer (CRAIC Technologies, San Dimas, CA) was used at a total magnification of 

150× in transmitted light mode. Calibration of the spectrometer with NIST traceable standards was 

performed before each use, along with Köhler illumination for the microscope. Autoset optimization, a 

dark scan, and a reference scan were employed prior to each sample scan. Fifty scans were taken at a 

resolution factor of five for each sample spectrum. Five spectra were taken at different locations along 

each fiber to account for variation in dye uptake. Hence, a total of 50 spectra were collected for each 

exemplar to provide sufficient information on dye loading variations within each exemplar. Visible MSP 

data was collected over the wavelength range of 350-800 nm. 

Preprocessing techniques were employed before subjecting the data to statistical treatment. Background 

subtraction was performed on each spectrum by subtracting the minimum absorbance value for each 

sample from all absorbance values.  Next, each background-subtracted spectrum was normalized to unit 
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vector length by dividing each absorbance value by the square root of the sum of squares of all 

absorbance values. 

Statistical analyses were performed using XLSTAT Pro (AddinSoft, New York, NY), an add-in software 

for Microsoft Excel (Redmond, WA). For agglomerative hierarchical clustering analysis, the five 

replicate spectra for each fiber were averaged to produce a readable dendrogram. The proximity between 

two samples was measured by Euclidean distance, and Ward’s Method was used for aggregation of 

samples.15 This set of conditions has performed well in our prior work and it generates groups and 

dendrograms that were very consistent with the clustering seen in PCA.16-20 The truncation line separating 

groups was set slightly higher than the most dissimilar exemplar’s replicates. Dissimilarity values were 

determined by locating the node where all the replicates for each exemplar met. From that truncation line, 

exemplars were placed into classes. 

PCA was conducted using the correlation matrix of the original variables (by mean centering the original 

variables and scaling to unit variance).15 Factor loadings plots and scores plots were generated from the 

first two principal components. For subsequent discriminant analysis, three PCs were retained, based on 

visual examination of the scree plot of eigenvalues (data not shown). 

An external validation was performed by separate analysts gathering data from three new fibers from each 

exemplar in the dataset. The same conditions were used as with the training dataset. Only PCA and DA 

were performed on these spectra from these fibers. PCA was performed to obtain factor scores of the 

validation set and subsequent DA was performed to predict to predict the classification of the new 

samples based upon dye loading. 

Discriminant Analysis (DA) was performed with the assumption that the within-class covariance matrices 

of the classes were not equal (i.e., Quadratic Discriminant Analysis).  In addition, the prior probabilities 

for class membership were considered to correct for any differences in the size of the classes. 
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Finally, PCA and DA were performed on pairs of dye classes from the original dataset. Dyed exemplars 

with dye loadings closest to each other were compared (e.g., A-B, B-C, C-D, D-E, etc.).  In each case, the 

data from two dye classes were selected, followed by PCA and DA where only two classes are defined.  

In addition to classification accuracy, receiver operating characteristic (ROC) curves were generated as a 

part of the DA output to determine the performance of the model. ROC curves are generated by plotting 

the true positive and false positive rates associated with the model. The same pretreatments and 

conditions were used as with the training dataset.  

Results and Discussion. Visual examination of the fibers revealed a slight difference in saturation 

between exemplars, however, discrimination of similar dye loadings was not possible. A preliminary 

examination of the exemplars by use of PLM and ATR-FTIR was conducted to confirm the identity of the 

fibers and to determine if the dye loading had any effect on the analysis. PLM was used to determine 

diameters, refractive indices, birefringence values, and signs of elongation. All exemplars had similar 

optical characteristics and dye loadings did not affect the results other than visual differences based on 

saturation. IR spectra were subjected to chemometric analysis and resulted in no significant differences 

between spectra of different fiber dye loadings. Library searches of the spectra were conducted, and they 

were highly correlated to exemplars of polyester. 

Figures 1A, 1B and 1C show the averaged data for each exemplar in raw form (Figure 1A), after 

subtracting a constant background (Figure 1B) and after normalization (Figure 1C).  Something that was 

immediately apparent in the spectra was a small but steady red shift in the wavelength of maximum 

absorption as dye loading increased (Figure 1A).  This shift (from 422 nm to 435 nm) would seem to 

indicate that, at high concentrations, the dye itself is changing the chemical environment within the 

polyester.  This shift is also independent of background or normalization and, hence, serves as a means of 

differentiation.  Subtracting a constant background from all spectra reduces the effects of scattered light 

and brings the baseline for all spectra to zero absorbance (Figure 1B).  This figure also illustrates a 

systematic change in the shape of the absorption – as reflected in the kurtosis and skewness of the peak.  
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In general, as dye loading increases, negative kurtosis increases (i.e., the absorption peak tails become 

thinner with respect to the central peak) and skewness decreases (i.e., the absorption peaks become more 

symmetric).  These effects are independent of background or normalization and represent another 

potential means of discriminating spectra.  Lastly, normalization accounts for differences in path lengths 

due to varying fiber diameters (Figure 1C).  In this case, the spectra all pass through two “nodes” at 395 

and 476 nm, but the differences in signal-to-background are very apparent. Fibers with a strong 

absorbance have a larger signal to background ratio than fibers with a weak absorbance. As can be seen in 

all spectra, the background spectrum decreases in absorbance from short to long wavelengths, which is 

due to increased light scattering at short wavelengths.  The change in the standard deviation of the 

normalized absorption values is also presented in Figure 1C.  The two distinct dips in this plot reflect the 

wavelengths at which the normalized absorbance for all spectra cross on either side of the peak 

maximum. 

Training set. Spectra of the ten exemplars from Table I were subjected to AHC, PCA, and DA after 

background subtraction and normalization. 

Agglomerative hierarchical clustering was performed first to detect outliers and to identify major classes 

of fibers. The intra-fiber spectra were averaged make it easier to visualize the classes in the dendrogram. 

This brought the number of replicates down from fifty to ten. The dendrogram in Figure 2 shows how 

AHC grouped the data, with increasing similarity to the left, and increasing dissimilarity to the right. A 

vertical truncation line was drawn to define the number of classes at a level of dissimilarity that was 

slightly higher than the highest level of dissimilarity between replicate spectra. Three distinct groups of 

spectra are suggested, representing low, medium, and high dye loadings. Class 1 are low dye loadings 

(0.1%, 0.2% w/w), and include exemplars A and B. Class 2 are medium dye loadings (0.4%, 0.5%, 0.75% 

w/w), and includes exemplars C, D, and E. Class 3 are high dye loadings (1.5%, 2.0%, 2.5%, 3.0%, 3.5% 

w/w), and includes exemplars F, G, H, I, and J. Based upon the within-class variance and the level of 
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dissimilarity at which the observations in each class are joined, Class 2 is the least homogenous while 

Class 1 is the most homogenous. 

PCA was performed using all replicate spectra from each fiber exemplar. Projected into the space of the 

first two PCs, the variation of spectral data for individual exemplars over three classes accounted for 

92.59% of the total variance of the data set. In general, the exemplars A-E are separated along the first 

PC, while exemplars F-J are separated along the second PC. Figure 3 shows the plot of the three classes 

produced from AHC. PCA and AHC show a consistent pattern suggesting that the three classes are due to 

three distinct levels of dye loading (low, medium, and high dye concentrations). 

Whereas the vectors defining the principal components are eigenvectors of the data’s variance-covariance 

matrix, the loadings plot (Figure 4) displays the contributions each wavelength makes to those 

eigenvectors, expressed as correlations between the original wavelengths and the resulting principal 

components. The first PC exhibits a strong negative correlation to wavelengths around the region of main 

absorption (408-453 nm) of the spectra.  The second PC shows positive correlations around the leading 

and trailing edges of the fibers’ spectral curve – the “nodes” as described above. In addition, a strong 

feature at 430 nm in PC2 correlates to the peak maximum. These regions of high correlation (positive and 

negative) define the relative contributions of these spectral regions in achieving class separation of the 

different fiber exemplars.  Hence, the fibers with low dye loading were separated by overall absorption 

whereas the fibers with high dye loading were separated based on the shape of the spectra. 

Discriminant analysis was performed in several ways on all the spectra. First, exemplars were assigned to 

their own classes and then to the three classes established by AHC. Leave-one-out cross validation was 

performed on the training set and a subsequent confusion matrix was produced. Here, DA is performed on 

all but one of the samples and a model is created. The sample that was left out is then classified based 

upon the model that was constructed. This step is repeated until every sample in the dataset is classified. 

However, cross validating the training set consisting of ten classes resulted in a low classification 
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accuracy of 50.80% (see Table II). Most misclassifications (i.e., 171 out of 254) occurred immediately off 

the diagonal of this matrix (e.g., between A and B, between B and C, between C and D, etc.).  In addition, 

the classification accuracy generally decreased as dye loading increased. This decrease can be attributed 

to fibers with higher dye loadings producing spectra that are similar in shape but the transmittance 

approaches that of a dark scan. 

Exemplars were also assigned to their AHC classes and DA was performed. Three classes were formed 

representing low, medium, and high dye loadings. The observation plot in Figure 5 had a total captured 

variance of 100% using two canonical variates. Although the 95% ellipses do overlap, the centroids for 

each class were not overlapped by the other ellipses. Leave-one-out cross validation produced an overall 

classification accuracy of 95.6% (Table III). The accuracy for each class did not vary significantly, 

ranging from 94% for Class 1 and 96.7% for Class 2. 

External Validation. Three additional fibers from each exemplar were analyzed by PCA and DA to 

independently evaluate the accuracy of the classification model. Using DA, these additional samples were 

assigned to one of the ten exemplar classes for the first DA analysis, and then placed into one of the three 

AHC classes for the second DA analysis. Table IV shows the classification accuracies of the external 

validation. Classification accuracy when the fibers were placed into one of ten classes was mixed, ranging 

from 27% - 100%. Such a poor accuracy is not unexpected given that the cross-validation accuracy for the 

training set was also quite low.  Overall, this result is a clear indication that classification of small 

differences in dye loading (e.g., 0.1 – 0.5%) is not reliable.  

In contrast, classification accuracy when the fibers were placed into one of three classes determined by 

AHC ranged from 93% - 100%.  Of the various external validation samples, only samples from 

Exemplars E and F were confused and this was limited to one sample misclassification each. 

Pair-Wise Comparisons. PCA and DA were performed on several pairs of exemplars to determine 

whether the groups could be discriminated from each other. The results in Table V show classification 
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accuracy varies from 52% - 94% depending upon which two exemplars were being differentiated.  The 

classification accuracy tended to decrease as the dye loadings of each pair increases.  A similar trend was 

present in the area under curve for a ROC plot for each comparison, which varied from 0.644 for highly 

dyed fibers to 0.992 for lightly dyed fibers. While there are no official levels to gauge classification 

accuracy and AUC – one can use terms such as “excellent” (>90), “good” (90 > x > 80), “fair” (80 > x > 

70), “poor” (70 > x > 60) and “fail” (< 60). By these measures, six of the nine pair-wise comparisons are 

“good” or “excellent” in terms of classification accuracy and/or ROC AUC.  Another important point is 

that pair-wise comparisons between exemplars that have the smallest difference in dye loading represent 

the most difficult scenario. 

Conclusions. Chemometric treatment of UV/visible spectra from fibers with different dye loadings has 

shown to be a reliable and effective way of discriminating between yellow dye loadings when fibers were 

placed into classes of low, medium, and high dye loading. In addition, comparisons of two groups of 

fibers can provide discriminating information. Overall, for forensic fiber examiners, the chemometric 

approaches described in this work have the potential to provide an objective way of comparing 

UV/visible spectra of known and questioned fibers. 
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Table I. Training dataset with respective naming designations and dye loadings in weight percent. 
 

Fiber ID Naming System % Dye Applied (w/w) 

674 A 0.10 

675 B 0.20 

676 C 0.40 

677 D 0.50 

678 E 0.75 

679 F 1.50 

680 G 2.00 

681 H 2.50 

682 I 3.00 

683 J 3.50 
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Table II. “Leave-one-out” cross-validation confusion matrix for classifying samples by exemplar.  The 
differences in dye loading between exemplars ranged from 0.1 – 0.5%. 

 
From\ 

to 
A B C D E F G H I J Total %correct 

A 46 4 0 0 0 0 0 0 0 0 50 92.0% 

B 5 40 5 0 0 0 0 0 0 0 50 80.0% 

C 0 4 23 18 5 0 0 0 0 0 50 46.0% 

D 0 0 18 18 14 0 0 0 0 0 50 36.0% 

E 0 0 1 10 33 6 0 0 0 0 50 66.0% 

F 0 0 0 0 7 30 8 5 0 0 50 60.0% 

G 0 0 0 0 0 9 27 9 2 3 50 54.0% 

H 0 0 0 0 0 7 10 11 5 17 50 22.0% 

I 0 0 0 0 0 1 10 17 8 14 50 16.0% 

J 0 0 0 0 0 2 7 15 8 18 50 36.0% 

Total 51 48 47 46 59 55 62 57 23 52 500 50.8% 
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Table III. Leave-one-out cross-validation confusion matrix for prediction of class membership based on 
the three classes suggested by AHC.  The difference in the mean dye loading of class 1 and class 2 was 

0.40%.  The difference in the mean dye loading of class 2 and class 3 was 1.95%.  
 

From\ to 1 2 3 Total %correct 

1 94 6 0 100 94.0% 

2 3 145 2 150 96.7% 

3 0 11 239 250 95.6% 

Total 97 162 241 500 95.6% 
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Table IV. External validation results: percentage of positive classifications for fibers grouped by 
exemplar and fibers grouped into respective classes generated from the AHC dendrogram. 

 
Fibers Grouped by Exemplar Fibers Grouped by AHC Class 

Additional 
Fiber 

Class Accuracy Additional 
Fiber 

Class Accuracy 

A A 100 % A 1 100 % 

B B 93.3 % B 1 100 % 

C C 46.7 % C 2 100 % 

D D 46.7 % D 2 100 % 

E E 60 % E 2 93.3 % 

F F 86.7 % F 3 93.3 % 

G G 40 % G 3 100 % 

H H 40 % H 3 100 % 

I I 26.7 % I 3 100 % 

J J 26.7 % J 3 100 % 
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Table V. Classification accuracies and area under the curve (AUC) for ROC curves for the nine pair-wise 
comparisons.  Comparisons shaded in grey do not have either a classification accuracy that exceeds 80% 

or an AUC that exceeds 0.8.  
 

Comparison Classification Accuracy ROC AUC 
A-B 92 % 0.992 
B-C 94 % 0.992 
C-D 64 % 0.720 
D-E 82 % 0.936 
E-F 89 % 0.982 
F-G 83 % 0.918 
G-H 75 % 0.845 
H-I 57 % 0.721 
I-J 52 % 0.644 
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Figure 1A. Fiber exemplar spectra (raw data).  The spectrum of each exemplar is an average of 10 fibers 
@ 5 scans per fiber (50 total scans) 
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Figure 1B. Fiber exemplar spectra (background subtracted).  The spectrum of each exemplar is an 

average of 10 fibers @ 5 scans per fiber (50 total scans).  The inset figure illustrates the change in peak 
shape for each exemplar (calculated between 350 and 525 nm).  
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Figure 1C. Fiber exemplar spectra (background subtracted and normalized).  The spectrum of each 
exemplar is an average of 10 fibers @ 5 scans per fiber (50 total scans).  The inset figure depicts the 

standard deviation of the variables as a function of wavelength. 
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Figure 2. AHC dendrogram of the 10 exemplars from the training set (10 fibers per exemplar). 
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Figure 3. Projections of the three classes generated from the dendrogram (Class 1: A, B; Class 2: C, D, E; 
Class 3: F, G, H, I, J) onto the principal components shown in Figure 4. 
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Figure 4. Factor loadings plot for first two principal components. Large negative projections on PC1 are 
associated with large absorbance between 408 nm and 453 nm.  Projections on PC2 are associated with 
the absorbance at the “nodes” of the normalized spectra (see Figure 1C) in relation to absorbance at the 

peak maximum (430 nm). 
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Figure 5. Scores plot of the first two canonical variates of three classes generated from the AHC 
dendrogram (Class 1: A, B; Class 2: C, D, E; Class 3: F, G, H, I, J). 
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