526 research outputs found

    The Microbial Community of a Terrestrial Anoxic Inter-Tidal Zone: A Model for Laboratory-Based Studies of Potentially Habitable Ancient Lacustrine Systems on Mars

    Get PDF
    Evidence indicates that Gale crater on Mars harboured a fluvio-lacustrine environment that was subjected to physio-chemical variations such as changes in redox conditions and evaporation with salinity changes, over time. Microbial communities from terrestrial environmental analogues sites are important for studying such potential habitability environments on early Mars, especially in laboratory-based simulation experiments. Traditionally, such studies have predominantly focused on microorganisms from extreme terrestrial environments. These are applicable to a range of Martian environments; however, they lack relevance to the lacustrine systems. In this study, we characterise an anoxic inter-tidal zone as a terrestrial analogue for the Gale crater lake system according to its chemical and physical properties, and its microbiological community. The sub-surface inter-tidal environment of the River Dee estuary, United Kingdom (53°21'015.40" N, 3°10'024.95" W) was selected and compared with available data from Early Hesperian-time Gale crater, and temperature, redox, and pH were similar. Compared to subsurface ‘groundwater’-type fluids invoked for the Gale subsurface, salinity was higher at the River Dee site, which are more comparable to increases in salinity that likely occurred as the Gale crater lake evolved. Similarities in clay abundance indicated similar access to, specifically, the bio-essential elements Mg, Fe and K. The River Dee microbial community consisted of taxa that were known to have members that could utilise chemolithoautotrophic and chemoorganoheterotrophic metabolism and such a mixed metabolic capability would potentially have been feasible on Mars. Microorganisms isolated from the site were able to grow under environment conditions that, based on mineralogical data, were similar to that of the Gale crater’s aqueous environment at Yellowknife Bay. Thus, the results from this study suggest that the microbial community from an anoxic inter-tidal zone is a plausible terrestrial analogue for studying habitability of fluvio-lacustrine systems on early Mars, using laboratory-based simulation experiments

    Gender Differences in Student Engagement Among African American Undergraduates at Historically Black Colleges and Universities

    Get PDF
    Differences in student engagement between women and men at historically Black colleges and universities (HBCUs) are examined in this study. Data were collected from 1,167 African American undergraduate students at 12 four-year HBCUs that participated in the National Survey of Student Engagement. Controlling for several factors that might obscure gender differences, the results counter previous research regarding gender gaps on HBCU campuses by illustrating that African American women enjoy an equally engaging experience as their same-race male counterparts

    Economic Comparison of Alternative Burley Tobacco Harvesting Practices by Computer

    Get PDF
    The computer model CATCH (Computer Analysis of Tobacco Cutting and Housing) was developed to provide the individual tobacco producer with management information concerning alternative methods of harvesting burley tobacco. CATCH utilizes specific producer in-puts to analyze 24 alternative burley production systems and presents up to four economic rankings containing costs, equipment and labor for each system. The economic rankings aid the producer in decision making with regard to his own operation

    A feldspar-nepheline achondrite clast in Parnallee

    Get PDF
    A feldspar-nepheline clast (FELINE) has been identified in Parnallee (LL3.6). Plagioclase is An_, Ab_ and nepheline contains 0.24-3.12wt% Cl. The calculated bulk composition is mildly alkaline, with 3.5wt% Na_2O. Plagioclase has heavy REE depletion and a positive Eu anomaly (Eu/Eu^*=65). Nepheline has lower total REE than plagioclase. On a three isotope plot, the oxygen isotope composition of FELINE falls near the Carbonaceous Chondrites Anyhdrous Minerals Line, beneath the Terrestrial Fractionation Line. This suggests that the parental material had carbonaceous chondrite affinities. It was derived from a melt with moderately enriched LREE and Eu (13.5×CI), which probably underwent an influx of Na-, Cl-rich fluids during crystallisation. This LREE-enrichment suggests that Ca-pyroxene crystallised in the parent body residue during a melt extraction event. REE abundances and the oxygen isotope signature are consistent with an origin as a lost plagiophile melt fraction complementary to the ureilites. FELINE provides further evidence that achondritic fragments with an igneous, exotic origin are an important component of chondritic meteorites

    Passive Polymer Application for Turbidity Reduction

    Get PDF
    2012 S.C. Water Resources Conference - Exploring Opportunities for Collaborative Water Research, Policy and Managemen

    Bacteria in Construction Site Sediment Basins

    Get PDF
    2010 S.C. Water Resources Conference - Science and Policy Challenges for a Sustainable Futur

    On the Nature of the NGC 1275 System

    Get PDF
    Sub-arcsecond images, taken in B, R, and H-Alpha filters, and area spectroscopy obtained with the WIYN 3.5-m telescope provide the basis for an investigation of the unusual structures in the stellar body and ionized gas in and around the Perseus cluster central galaxy, NGC 1275. Our H-Alpha filter is tuned to gas at the velocity of NGC 1275, revealing complex, probably unresolved, small-scale features in the extended ionized gas, located up to 50/h kpc from NGC 1275. The mean H-Alpha surface brightness varies little along the outer filaments; this, together with the complex excitation state demonstrated by spectra, imply that the filaments are likely to be tubes, or ribbons, of gas. The morphology, location and inferred physical parameters of the gas in the filaments are consistent with a model whereby the filaments form through compression of the intracluster gas by relativistic plasma emitted from the active nucleus of NGC 1275. Imaging spectroscopy with the Densepak fiber array on WIYN suggests partial rotational support of the inner component of low velocity ionized gas. We confirm and extend evidence for features in the stellar body of NGC 1275, and identify outer stellar regions containing very blue, probably very young, star clusters. We interpret these as evidence for recent accretion of a gas-rich system, with subsequent star formation. We suggest that two main processes, which may be causally connected, are responsible for the rich phenomenology of the NGC 1275 system -- NGC 1275 experienced a recent merger/interaction with a group of gas-rich galaxies, and recent outflows from its AGN have compressed the intracluster gas, and perhaps the gas in the infalling galaxies, to produce a complex web of filaments. (Abridged)Comment: AJ, accepted; a recommended full resolution version is available at http://www.astro.wisc.edu/~chris/pera.p

    Spectroscopy of Globular Clusters in M81

    Get PDF
    We present moderate-resolution spectroscopy of globular clusters (GCs) around the Sa/Sb spiral galaxy M81 (NGC 3031). Sixteen candidate clusters were observed with the Low Resolution Imaging Spectrograph on the Keck I telescope. All are confirmed as bona fide GCs, although one of the clusters appears to have been undergoing a transient event during our observations. In general, the M81 globular cluster system (GCS) is found to be very similar to the Milky Way (MW) and M31 systems, both chemically and kinematically. A kinematic analysis of the velocities of 44 M81 GCS, (the 16 presented here and 28 from previous work) strongly suggests that the red, metal-rich clusters are rotating in the same sense as the gas in the disk of M81. The blue, metal-poor clusters have halo-like kinematics, showing no evidence for rotation. The kinematics of clusters whose projected galactocentric radii lie between 4 and 8 kpc suggest that they are rotating much more than those which lie outside these bounds. We suggest that these rotating, intermediate-distance clusters are analogous to the kinematic sub-population in the metal-rich, disk GCs observed in the MW and we present evidence for the existence of a similar sub-population in the metal-rich clusters of M31. With one exception, all of the M81 clusters in our sample have ages that are consistent with MW and M31 GCs. One cluster may be as young as a few Gyrs. The correlations between absorption-line indices established for MW and M31 GCs also hold in the M81 cluster system, at least at the upper end of the metallicity distribution (which our sample probes). On the whole, the mean metallicity of the M81 GCS is similar to the metallicity of the MW and M31 GCSs. The projected mass of M81 is similar to the masses of the MW and M31. Its mass profile indicates the presence of a dark matter halo.Comment: 35 pages, including 11 figures and 9 tables. Accepted for publication in the Astronomical Journa

    Aram Dorsum: an extensive mid-Noachian age fluvial depositional system in Arabia Terra, Mars

    Get PDF
    A major debate in Mars science is the nature of the early Mars climate, and the availability of precipitation and runoff. Observations of relict erosional valley networks have been proposed as evidence for extensive surface run‐off around the Noachian‐Hesperian boundary. However, these valley networks only provide a time‐integrated record of landscape evolution and thus the timing, relative timescales and intensity of aqueous activity required to erode the valleys remain unknown. Here, we investigate an ancient fluvial sedimentary system in western Arabia Terra, now preserved in positive relief. This ridge, ‘Aram Dorsum’, is flat‐topped, branching, ~ 85 km long, and particularly well‐preserved. We show that Aram Dorsum was an aggradational alluvial system and that the existing ridge was once a large river channel‐belt set in extensive flood plains, many of which are still preserved. Smaller, palaeochannel‐belts feed the main system; their setting and network pattern suggest a distributed source of water. The alluvial succession is up to 60 m thick, suggesting a formation time of 105 to 107 years by analogy to Earth. Our observations are consistent with Aram Dorsum having formed by long‐lived flows of water, sourced both locally, and regionally as part of a wider alluvial system in Arabia Terra. This suggests frequent or seasonal precipitation as the source of water. Correlating our observations with previous regional‐scale mapping shows that Aram Dorsum formed in the mid‐Noachian, making it one of the oldest fluvial systems described on Mars and indicating climatic conditions that sustained surface river flows on early Mars

    In situ detection of boron by ChemCam on Mars

    Get PDF
    We report the first in situ detection of boron on Mars. Boron has been detected in Gale crater at levels Curiosity rover ChemCam instrument in calcium-sulfate-filled fractures, which formed in a late-stage groundwater circulating mainly in phyllosilicate-rich bedrock interpreted as lacustrine in origin. We consider two main groundwater-driven hypotheses to explain the presence of boron in the veins: leaching of borates out of bedrock or the redistribution of borate by dissolution of borate-bearing evaporite deposits. Our results suggest that an evaporation mechanism is most likely, implying that Gale groundwaters were mildly alkaline. On Earth, boron may be a necessary component for the origin of life; on Mars, its presence suggests that subsurface groundwater conditions could have supported prebiotic chemical reactions if organics were also present and provides additional support for the past habitability of Gale crater
    • 

    corecore