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Abstract: Evidence indicates that Gale crater on Mars harboured a fluvio-lacustrine environment that
was subjected to physio-chemical variations such as changes in redox conditions and evaporation
with salinity changes, over time. Microbial communities from terrestrial environmental analogues
sites are important for studying such potential habitability environments on early Mars, especially in
laboratory-based simulation experiments. Traditionally, such studies have predominantly focused on
microorganisms from extreme terrestrial environments. These are applicable to a range of Martian
environments; however, they lack relevance to the lacustrine systems. In this study, we characterise
an anoxic inter-tidal zone as a terrestrial analogue for the Gale crater lake system according to its
chemical and physical properties, and its microbiological community. The sub-surface inter-tidal
environment of the River Dee estuary, United Kingdom (53◦21′15.40” N, 3◦10′24.95” W) was selected
and compared with available data from Early Hesperian-time Gale crater, and temperature, redox,
and pH were similar. Compared to subsurface ‘groundwater’-type fluids invoked for the Gale
subsurface, salinity was higher at the River Dee site, which are more comparable to increases in salinity
that likely occurred as the Gale crater lake evolved. Similarities in clay abundance indicated similar
access to, specifically, the bio-essential elements Mg, Fe and K. The River Dee microbial community
consisted of taxa that were known to have members that could utilise chemolithoautotrophic and
chemoorganoheterotrophic metabolism and such a mixed metabolic capability would potentially have
been feasible on Mars. Microorganisms isolated from the site were able to grow under environment
conditions that, based on mineralogical data, were similar to that of the Gale crater’s aqueous
environment at Yellowknife Bay. Thus, the results from this study suggest that the microbial
community from an anoxic inter-tidal zone is a plausible terrestrial analogue for studying habitability
of fluvio-lacustrine systems on early Mars, using laboratory-based simulation experiments.

Keywords: Mars; lacustrine system; habitability; analogue community

1. Introduction

The surface of present day Mars is deemed inhospitable to life. The environment is cold, dry,
highly oxidised and exposed to ultraviolet (UV) and ionizing radiation. On early Mars, the surface
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conditions appear to have been more conducive to life, with a warmer climate and a denser atmosphere
that could provide protection from UV and cosmic radiation [1–4]. Globally and locally, ancient fluvial
systems, of various orders of magnitude, are observed, which may have once been habitable (e.g., [5–9]).
Sediments formed by those processes preserve evidence of those ancient conditions (and potential
biomarkers within), so they can be studied to decipher the past. Unambiguous, ground-based evidence
of a range of past aqueous activity has been collected from Gale crater by the Mars Science Laboratory
rover Curiosity since 2012 (e.g., [8,10–13]). Thus, we chose this example to compare—and as necessary
contrast—our analogue site. It must be noted that there is also ubiquitous evidence for similar systems
elsewhere on Mars [14].

1.1. Geology and Lake Evolution at Gale Crater

Gale crater is a 155 km diameter impact crater at the border of the ancient highlands and Elysium
Planitia (4.491 S, 137.421 E). It formed during the late Noachian, creating impact melt, an ejecta
blanket and a central uplift [15], all of which are currently covered by sediment and/or eroded.
Before the arrival of the Curiosity rover, the crater had been extensively studied with remote data,
including evidence for the existence of a fluvio-lacustrine system [10,14] the sedimentology of the
central mount (e.g., [16]) and the occurrence of sulphate-, haematite-, and clay-bearing signatures in
CRISM spectra [16,17].

After landing, mineralogical studies from the Curiosity rover have been used to estimate
characteristics of Gale crater’s aqueous environment at Yellowknife Bay, indicating circumneutral
pH, temperatures suitable for long-standing water, and salinity of between 1 and 2%. For example,
the Sheepbed mudstone, discovered at Yellowknife Bay, gives strong indications of circumneutral
fluid activity (due to the prevalence of clay minerals), sediment transport and low salinity [10,18,19].
These data have been used to ascertain and interpret our contemporary understanding of potentially
habitable fluvio-lacustrine systems on ancient Mars, as well as understanding the presence of
bio-essential minerals and carbon sources [10,20,21]. In summary, Gale’s early clay-formation history
has been deduced to have been circumneutral, with potentially varied, diagenetic redox conditions
(e.g., [10,19,22–24]). Oxychlorine phases (chlorates/perchlorates) have been detected in varying
amounts in the Gale sediments, ranging from as little as 0.05 ± 0.025 to a maximum of 1.05 ± 0.44 wt.%
ClO4 [21], and alongside with iron sulphides, and the SAM-EGA evolution of H2S attest to a variety of
redox conditions in the rocks [18,21]. Despite these redox agents, organic carbon and nitrogen have
been detected and support the concept of habitable conditions [10,21]. Most recently, the preservation
of organic carbon, aided by the formation of organic sulphur molecules, has been reported in the
lacustrine mudstones at the base of the lake sediment sequence [25].

With ongoing mission progress upwards in stratigraphy, a much more varied geological history
has been found; most important for this study are sandstones, silica-rich deposits, and the fact that
Gale shows signs of repeated evaporation to dryness. Yellowknife Bay strata are mud- and siltstones,
but coarser fractions have been found early in the mission, with the detection of conglomerates
indicating a fluvial-lacustrine-deltaic system with minor dry episodes, all comprising the Bradbury
group (e.g., [8,10,12]). Stratigraphically higher is the Mount Sharp group, which includes the Murray
mudstone-dominated unit. Overlying both units is the Stimson sandstone, which formed in a dry,
aeolian setting, thus marking a dramatic transition of conditions [26]. The fluvio-lacustrine sediments
experienced circumneutral diagenesis at up to about 50 ◦C (e.g., [11,19]) during burial of the sediments,
forming a clay and Fe oxide bearing secondary assemblage [18]. However, in localised areas some
jarosite and evidence of element mobility associated with intense leaching have been taken as indicative
of alteration in acidic conditions (e.g., [24,27]). Silica-rich deposits have also been detected and are
thought to be the result of tridymite-rich detrital sediments [28], which in places have undergone
alteration and silica remobilisation along fractures at low temperatures [29].

In addition, evidence for evaporation, occasionally to dryness, has been found chemically,
geomorphologically and through hydrologic modelling (e.g., [12,30,31]). A visual example of this
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was the discovery of mud cracks in the Murray formation [32]. This short summary demonstrates
how the fluid conditions are thought to have changed over time, both episodically and towards the
dry conditions observed today, from circumneutral to acidic, and from low to high salinity, and with
varying redox [19,22,27,30,32,33]. Higher-salinity fluids, analogous to those found in the terrestrial
marine environment, have thus occurred repeatedly.

Throughout the early Hesperian time period (Figure 1), it is postulated that the Gale
crater lacustrine system underwent episodic drying periods, with intermittent lakes present over
approximately 30,000 Earth years [34]; however, the absolute timing of the sedimentation cycle is
currently uncertain. It has been suggested that regional groundwater flow contributed significant
amounts of water to Gale crater [34], and thus may have provided a refuge for microbial life when
surface, and shallow subsurface, desiccation occurred. The conditions associated with Gale crater
sediments are probably not unique. Circumneutral pH conditions have been inferred for other
locations on Mars, for example the Terby and Jezero craters [35–37], and evidence of acid alteration and
evaporation have been found and modelled (e.g., [22,38–41]). Since Gale crater is the target of current
in-situ analyses, and future Mars missions are likely to target similar fluvial or lacustrine environments
(see, e.g., [42,43]), identifying and characterising the microbial communities that could be supported
by lacustrine systems is of fundamental importance to determining potential habitability on past and
present Mars. Such studies rely on terrestrial analogues that match or simulate Martian environmental
conditions and/or utilise microbial communities that can survive within these conditions.
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Figure 1. Timeline of the geologic eons on Earth and Mars, drawn after Carr and Head (2010) [44],
see there for details of the geologic history of Mars. The red bar shows the timing and duration of the
sedimentary cycle at Gale crater as given by Paulucis et al. (2016) [34].

1.2. Microbes in Analogue Systems

Investigating the microbial community within an analogous active system can give insights
into the microbial processes that could occur and any resulting bio-signatures that could be used as
evidence of life. Traditionally, such studies have predominantly focused on microorganisms from
extreme terrestrial environments, such as those with high salinity, cold temperatures and high acidity,
or microorganisms that are chemolithoautotrophic [45–49]. These are applicable to a range of Martian
environments, for example the acidic environments indicated by the presence of jarosite at Meridiani
Planum; however, they have limited relevance to the lacustrine systems evident at Gale crater [50,51].
Only limited work, to date, has utilised terrestrial analogues for lacustrine systems; this has focused
on microorganisms from general environmental comparisons (e.g., fluvial-lacustrine environments in
Iceland [52], direct lithological comparisons (e.g., the Green River Formation [53]), or mineral specific
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analogues (e.g., a clay mineral analogue of Yellowknife Bay [54]). Since the detection of calcium
sulphate veins on Mars, there have been several terrestrial analogue environments proposed that
mimic the geochemical processes that occurred at Gale crater. These analogues include such diverse
environments as the Upper Triassic mudstones at Watchett Bay, UK [30] and the Triassic Moenkoepi
Formation mudstones in Utah, USA [55]. The formation of sulphate veins at these sites has been
proposed to be analogous to the formation of similar mineralogies in the clay sediments at Gale crater,
but no attention was given to those sites’ local microbial communities.

1.3. Comparing and Contrasting the Analogue Site Prerequisites to Gale Crater

Here we propose the microbial community from the anoxic inter-tidal zones as analogues for the
ancient lake system at Gale crater, and other equivalent locations on Mars, which we chose on the
basis of the following expected similarities: an estuary environment has a salinity of between 0.5 and
3.5%, which is comparable to the 1–2% salinity proposed for the ancient Martian lake system [11,18,56].
The pH is approximately circumneutral [56], which is comparable to the pH of the proposed aqueous
environment at Gale crater [19,57]. Inter-tidal zones are also subjected to periods of drying; daily drying
occurs within the upper region of the intertidal sediments and long-term drying occurs within
the backshore. These periods of exposure to air can also result in changes to the salinity of this
environment; drying raises salinity but precipitation causes salinity to lower to below that of a typical
marine environment. Morphological evidence suggests that most drying episodes were longer in the
Gale crater lacustrine system with periods of drying many orders of magnitude longer (potentially
thousands of years versus diurnal) than seen at the River Dee site chosen for this study, but desiccation
cracks at the target ‘Old Soaker’ also record rapid changing lake levels with the associated local changes
in conditions [32]. In addition, our focus was the region below the Redox Potential Discontinuity
(RPD), which is anoxic and might have useful analogies to the moderately oxidising environment
indicated by Gale crater sediments [58].

The environmental conditions within the analogue site at the River Dee estuary, UK were
characterised and compared to the conditions known at Gale crater. In parallel, the microbial
community was identified as an analogue for putative life, which could be used in laboratory-based
simulation experiments to study microbial processes in ancient Martian lacustrine systems. In this
way we can identify biological processes, and subsequent bio-signatures that could have existed in
ancient lacustrine systems on Mars.

2. Materials and Methods

2.1. Sample Site and Sample Collection

The site for this study was the Thurstaton region of the River Dee estuary, UK (53◦21′15.40” N,
3◦10′24.95” W) (Figure 2). The site is situated approximately 8 km from the mouth of the estuary.
At this location, the salinity of the water is approximately 2.6% (26 ppm) [59]. The estuary is believed
to have been glacially cut and has evolved through erosional processes over 18,000 years, resulting in a
relatively large basin for the volume of river water discharged [60].

In November 2013, sediment samples were aseptically collected from 30 cm below the surface
and beneath the RDP Layer, where the conditions were anoxic (Eh value of approximately −156 mV).
The sample sites were determined using a 30 × 40 m grid layout, which was located 100 m from the
water at low tide (at high tide the site was submerged). The sample grid consisted of two rows 10 m
apart that ran parallel to the estuary, with four sample sites on each row at 10 m intervals. Sites were
numbered as follows: 1 to 4 in row one (nearest the water) and 5 to 9 in row 2.
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Figure 2. (A) Map of the United Kingdom with an arrow showing the location of the sample site; (B) an
image of the River Dee estuary. The red box denotes the sampling site location that was used in this
study [61].

All tools used to collect samples were cleaned with 95% ethanol and then rinsed with autoclaved
ddH2O between sampling. Approximately 10 g of sediment was collected, aseptically, from each site
and stored in a plastic Whirl-Pak bag. The samples were kept at ambient temperature during field
work and transported at 4 ◦C (for approximately four hours). On return to the laboratory, sub-samples
(2 g) were stored at −80 ◦C for nucleic acid analysis; whilst the remaining sample was stored at 4 ◦C,
for further analyses.

2.2. Temperature, pH and TOC

Temperature and pH measurements were carried out at the estuary in situ. Temperature was
measured using an RS 1327 K Infrared Thermometer. The probe was inserted into the sample, below the
RDP zone, taking care to avoid any areas that were in, or had been in, direct sunlight. The probe
was left in place until a steady reading was obtained (accuracy of ±0.02). For pH measurements,
a Thermo Scientific (Waltham, MA, USA) Orion Three Star pH probe (±0.002 pH unit accuracy) was
used, which was calibrated using Omega Buffer solutions at pH 4 and 10. The probe was inserted
below the RDP zone and left in place until a steady reading was obtained.

Total Organic Carbon (TOC) measurements of the sediment samples were carried out using a
Total Carbon Analyser (TOC-V C5N) with an SSM-5000A solid state module (Shimadzu, Kyoto, Japan).
One gram of wet weight sediment (n = 3) was dried for 2 h at 180 ◦C prior to analysis. For calibration,
a glucose standard was used, as recommended by the manufacturer.

2.3. Mineralogy

A polished block was produced by fixing a pellet of compressed sand in epoxy-resin and polishing
the surface. This block was carbon-coated using a K950X Turbo carbon sputter coater (EMITECH,
Montigny-le-Bretonneux, France). The mineralogy of the sand was examined using an FEI Quanta 3D
dual beam scanning electron microscope with a 80 mm X-MAX energy dispersive X-ray detector in
energy dispersive spectroscopy (EDS) mode (Oxford Instruments, Oxford, UK). Elemental mapping
was carried out using an acceleration voltage of 20 kV and a beam current of 0.6 nA. Point spectra were
taken at discrete locations on each sample. The presence of Si, Na, K, Al, P, S, Cr, Fe, Ti, Mg, Ca and
Cl was mapped to facilitate mineral identification, with proportions of each mineral calculated using
ImageJ software (https://imagej.nih.gov/ij/).

https://imagej.nih.gov/ij/


Microorganisms 2018, 6, 61 6 of 19

2.4. Cell Enumeration

Total cell numbers were determined by adding 1 g (wet weight) of sample to 1 mL of sterilised
ddH2O. The samples were stained with Sybr Green DNA stain, and analysed using a Leica DMRP
microscope equipped with epifluorescence (Leica Microsystem, Bensheim, Germany), as previous
described [60]. All enumerations were conducted with 50 fields of view counted per sample.

2.5. Microbial Community Analysis

The microbial communities were fingerprinted by terminal restriction fragment length
polymorphism (tRFLP) analysis of the 16S rRNA gene. Genomic DNA was extracted from 0.5 g
(wet weight) of sediment using the phenol/chloroform extraction protocol previously described [62].
The 16S rRNA gene was partially amplified for bacteria and archaea using the following primers:
6FAM labelled 63f and 530r, and 6FAM labelled A341f and A1204r [63–65].

Amplifications were carried out identically using 10 ng template DNA, 250 nM of each primer,
5 µL of 10 × Taq buffer, 2 mM MgCl2, 0.1 mM of each Deoxynucleotide Triphosphate (dNTP), 5 µg
bovine serum albumin (BSA) and 1.75 U of Taq. PCR conditions were as follows for the bacteria:
initial denaturation at 94 ◦C for 10 min. This was followed by 35 cycles of: denaturing 45 s 94 ◦C,
annealing 1 min at 56 ◦C, elongation 3 min 72 ◦C. Final elongation was for 10 min at 72 ◦C. For archaea,
the conditions were as follows: initial denaturation at 94 ◦C for five min, followed by 35 cycles of
denaturing for one min at 94 ◦C, annealing at 55 ◦C for one min and extension at 72 ◦C for one min,
followed by a final extension for ten min.

The amplified gene fragments were purified using a Qiagen PCR purification kit according
to manufacturer’s guidelines. Concentrations of purified PCR products were quantified using a
ThermoScientific NanoDrop 100 spectrophotometer, according to manufacturer’s guidelines. Purified
PCR products (10 ng) were digested in mixtures containing 10 U of MspI restriction endonuclease,
0.1 µg of BSA and 1 µL of CutSmart enzyme buffer (×10) and made up to 10 µL using sdH2O.
The digestion was carried out at 37 ◦C overnight and analysed using a 3730 Sanger sequencer
(Macrogen, Seoul, Korea). The resulting electropherograms were analysed with SoftID Genemarker
V2.6.4 software (SoftGenetics, State College, PA, USA). Quality filtering was carried out and tRFs
smaller than 100 bp and with an intensity of <50 units were not included.

To identify the approximate taxonomy of the individual peaks, in-silico digestions were carried
out on MiSeq sequencing from site 3 using the 28f and 530r primers for bacteria, and the 340f and 534r
for archaea sequences. The MiSeq sequencing was carried out at a commercial sequencing core facility
(Research and Testing Laboratory, Lubbock, TX, USA). The sequences were analysed using the QIIME
pipeline [66]. Briefly, the sequences were filtered and those with <300 nucleotides were excluded.
The chimeric sequences were checked for using ChimeraSlayer [67]. Classification was carried out by
aligning the sequences against the Silva sequence database [68] and taxonomy generated using the
Naïve Bayesain rRNA Classifier version 1.0 tool within the Ribsomal Database Project classifier [69].
All sequences were submitted to NCBI under the accession numbers: SAMN07176080 (archaea) and
SAMN07176079 (bacteria).

In-silico digestions of the FASTA formatted sequences were carried out by trimming the MiSeq
sequences at the tRFLP primer binding sites as well as the MspI cleavage site. The resulting sequence
fragment lengths were compared with those obtained from tRFLP data (http://nebc.nerc.ac.uk/cgi-
bin/trflp0_2.cgi). Each individual peak was assigned a taxon where >75% of the in-silico terminal
restriction fragments (tRFs) from the MiSeq sequence matched de novo tRF length.

2.6. Isolation of Microorganisms

The isolation of anaerobic microorganisms was carried out using a marine-based medium
containing (g L−1): 9.45 of NaCl, 8.8 of MgCl2; 5 of Peptone; 3.24 of NaSO3; 1.8 of CaCl2; 1 of yeast
extract; 0.55 of KCl; 0.16 of NaHCO3; 0.10 of ferric citrate; 0.02 of H3BO3 and 0.008 of K2HPO4. The pH

http://nebc.nerc.ac.uk/cgi-bin/trflp0_2.cgi
http://nebc.nerc.ac.uk/cgi-bin/trflp0_2.cgi
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was adjusted to 7 with 1 M HCl and aliquoted into hungate tubes prior to autoclaving. The media was
inoculated aseptically under anaerobic conditions with 1 g of sample, and then incubating at 14 ◦C.
After 14 days, the cultures were examined using the Leica DNRP microscope at 100×magnification [62].
Repeated serial dilutions were carried out to isolate microorganisms from the enrichments.

The bacteria were identified based on near-full length 16S rRNA gene sequences. Total nucleic
acids were extracted from the isolates using the Phe:Chl:Iaa bead beating protocol described by [62].
The 16S rRNA gene was amplified using two sets of primers: 27f-Com2 and Com1-1541r, as previously
described [62]. BioEdit software (version 7.1.3.0, Ibis Therapeutics, Carlsbad, CA, USA) was used
to align the sequences and the resulting contigs were approximately 1500 bp in length. The nearest
sequences were identified in the GenBank database using the BLASTN program. All contiguous
sequences were deposited into Genbank.

2.7. Microbial Growth Experiments

Growth experiments were conducted with the isolates under conditions associated with
fluvio-lacustrine systems on early Mars. The isolates were grown under anaerobic conditions, using a
Mars simulation gas as the headspace (95.3% carbon dioxide, 2.7% nitrogen, 1.7% argon, 0.2% oxygen
and 0.03% water vapour), 15 ◦C, circumneutral pH and 2% salinity. For these experiments, a minimal
medium was used, which contained (g L−1): 1 of NH4Cl, 2 of Na-Lactate, 1 of Na-thioglycollate, 1 of
ascorbic acid, 37 g NaCl and 13.25 g Na2CO3.

To monitor microbial growth and pH, 1 mL aliquots were aseptically removed after 1, 4, 7, 14, 21,
28 days. Cells were stained with the nucleic acid-binding dye SYBR Green I DNA (0.1% w/v stock;
Life Technologies, Paisley, UK). One mL of culture was filtered through a 0.2 µm black polycarbonate
filter and then washed with 100 µL of dd H2O. Cells were enumerated using a Leica DMRP microscope
equipped with epifluorescence, as previously described [62].

2.8. Statistical Analyse

Statistical analyses were carried out using the Primer E (version 5), R stat version 3.2.4 and
Microsoft Excel 2016 software packages [70,71]. The dissimilarity of tRFs between each of the sample
rows (distance from the water), and within rows, were tested using an analysis of similarity (ANOSIM)
within Primer 5 [70].

Visualisation of the individual peak dissimilarity was carried out by constructing a Principal
Component Analysis (PCA) plot. Measures of tRF diversity were obtained by calculating the
Shannon–Weiner diversity index (H’), although attributing diversity indices to community fingerprints
introduces an inherent error [72]. To determine which tRFs had the greatest influence on differences
between bacterial communities, a SIMPER analysis [73] was carried out. To visualize the operational
taxonomic unit (OTU) richness of each sample, a rarefaction curve was generated using the R
software package. Any differences in OTU richness evident from rarefaction were confirmed by
a Mann–Whitney U-test of difference.

One-way analysis of variance (ANOVA) was used to investigate the difference between sample
sites with respect to their environmental characteristics.

3. Results

3.1. Temperature, pH and TOC

There was no significant difference between temperature, pH values and TOC between each
sample site, when examined using parametric analyses (ANOVA) (Table 1). Therefore, mean values
were determined for each parameter: 12.4 ± 0.7 ◦C; pH 8.2 ± 0.1; TOC 1.29 ± 0.3%.
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Table 1. pH, temperature and TOC values for each of the sample locations within the sub-surface
coastal zone of the Dee Estuary.

Site Temperature (◦C) pH TOC (%)

1 12.2 8.23 1.50
2 12.2 8.14 1.46
3 11.6 8.08 1.49
4 11.8 8.45 1.47
5 12.3 8.31 1.10
6 13.3 8.38 1.84
7 11.9 8.29 1.41
8 12.3 8.08 0.99

ANOVA test

p value >0.1 >0.1 >0.1

3.2. Mineralogy

SEM analyses showed that the dominant phase was quartz (Figure 3), present as rounded
to sub-rounded grains. Other phases included feldspars (potassium-rich, likely to be sanidine),
titanohaematite and apatite. Several grains were surrounded by fine-grained detrital material (Figure 4)
with a composition analogous to phyllosilicate (clay) minerals, most likely illite. Calculations of
modal mineralogy indicated the sediments consisted of: 63% quartz, 23% clay, 9% sanidine and
5% minor fractions.
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Minor feldspar (F) was evident. Higher contrast areas correspond with high atomic weight elements,
and were confirmed to be titanomagnetite (Ti).

3.3. Cell Enumeration

There were no statistically significant differences between sites within or between rows (p > 0.1)
(ANOVA). The mean value for row 1 was 3.53± 1.2× 108 cells per gram and row 3 was 2.5± 0.9× 108 cells
per gram; the overall mean for all sites was calculated to be 3.3± 1.3× 108 cells per gram.

3.4. Community Analysis

The microbial communities within the sample sites were examined using a combination of MiSeq
and community fingerprinting. The sample site with the greatest variation in the individual peaks was
selected for MiSeq data. The partial 16S rRNA gene sequences obtained with MiSeq resulted in a total
of 5134 raw reads, which, after quality filtering, resulted in 1031 sequences. The bacterial community
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was dominated by the families Hyphomicrobiaceae (28%), Flavobacteriaceae (23%) and Alteromonadaceae
(16%), making up 67% of the community, as shown in Figure 5.
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To examine variation in relative abundance within the sample site, the communities were
examined by community fingerprinting. Based on the in-silico digestion, each tRF was taxonomically
classified (Table S1). There was no significant difference in the relative abundance between the
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taxonomic groups at each of the sites. PCA analysis demonstrated that there was no obvious difference
between the sites (Figure 6). Examination of the α-diversity (Shannon–Weiner; H’) also confirmed that
there was no difference between the sites.
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For archaea, sequences obtained resulted in a total of 7163 raw reads, which, after quality filtering,
resulted in 6386 sequences. The community was dominated by Thaumarchaeota phylum, resolved down
to the Nitrosopumilus genus. This was the only sequence with above 80% confidence. The tRFLP data
for each of the samples sites demonstrated that the Nitrosopumilus genus was dominant in all of the
samples (~65%). There was no significant difference between sites (ANOSIM, R = −0.13 (p > 0.5).

3.5. Microbial Isolates

From the anoxic sediment three anaerobic isolates were obtained, which belonged to the bacterial
classes Bacilli, Clostridia and Gamma-proteobacteria, as shown in Table 2. The Bacilli isolates showed
99% identity to a cultivated strain of the genus Bacillus (E01). The Clostridia showed 98% similar
identity to the genus Clostriuduim (E02); the Gamma-proteobacteria showed 99% similarity to the
genus Acinetobacteria (E01).

Table 2. Identification of bacteria isolated from the sub-surface intertidal zone of the River Dee estuary.

Isolate Genebank No◦ Closest Genebank Relative Sequence Identity Class

E01 MH450108 Acinetobacter johnsonii 99% Gammaproteobacteria
E02 MH450105 Clostridium amygdalinum 98% Clostridia
E03 MH450106 Bacillus toyonensis 99% Bacilli

Each of the isolated were screened for their ability to grow under environmental conditions
associated with the ancient lacustrine environment at Gale crater (15 ◦C, pH 7, salinity of 2%, and a
Mars simulation gas headspace). The specific growth rates were determined as 0.015 h−1, 0.24−1 and
0.17−1 for E01, E02 and E03, respectively.
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4. Discussion

4.1. An Analogue for the Fluvio-Lacustrine System at Gale Crater?

Evidence from recent Mars missions has demonstrated the heterogeneity of Martian environments
across geological time and geographical location (e.g., [2,58,74–77]). Thus, the focus of this study was
the well-characterised, and potentially habitable, fluvio-lacustrine system at Gale crater (see Section 1.1).
As shown above, results from Curiosity rover suggest that the conditions in Gale crater were not as
“extreme” as traditional Martian analogue environments, such as Rio Tinto or the Atacama Desert,
have been proposed to mimic. Instead, temperatures may have been suitable for long-standing surface
water with circumneutral pH, clay-formation, locally deviating host rock chemistry, and 1–2% salinity.
These conditions do not adequately compare to existing inland or fully marine analogue environments
but do match estuarine environments such as the one proposed here.

The focus of this study was, specifically, the anaerobic zone below the RDP where reducing
conditions dominate. This was chosen to be comparable with early Mars’ atmosphere, which is likely
to have been oxygen poor [78], resulting in anoxic (or even anaerobic) conditions beneath the planet’s
surface. Further, evidence from Curiosity’s CheMin indicates that the mudstones of the Sheepbed
Formation at the John Klein (JK) and Cumberland drill holes were deposited under only moderately
oxidising conditions [10,18,79]. For instance, the presence of saponites indicates that Fe2+ oxidation
was limited, avoiding the very low pH associated with widespread acidic conditions [58]. Hence,
the low-oxygen conditions of the River Dee estuary provide an analogy with those of Gale crater’s
lacustrine system.

The mean total organic carbon (TOC) content of the River Dee sites was calculated to be
1.29 ± 0.3%. This is higher than at Gale crater, where preliminary estimates, based on evolved CO and
CO2 measured Curiosity’s SAM instrument, of organic carbon abundance in Gale crater sediments
of between 0.08 and 0.24% [80]. Chlorinated hydrocarbons, detected by Curiosity’s SAM, GC-MS
instruments [81], are believed to be, in part, reaction products from the combustion of chlorinated
derivatisation products carried in the rover’s sample acquisition and analysis system [82,83].
Other carbon sources are required to account for the quantity of CO2 detected from the John Klein
mudstones, for example the decomposition of Fe/Mg-carbonates [20], a low-abundance indigenous
organic component or exogenous meteoritic organic carbon [40], but not have been positively identified.

Organic carbon has been identified in Martian meteorites [84,85], and analyses suggest this may
be derived from an influx of organic material to the Martian surface from carbonaceous meteorites.
McLennan [85] proposed that an influx of such material could provide between 0.03 and 0.12% organic
carbon, in line with the preliminary calculations of Sutter et al. [80], and most recent observations
have found a rich diversity of organic species in the Pahrump Hill mudstones [25]. Until unequivocal
evidence for the existence of indigenous organic species is confirmed, however, Gale crater remains an
organic carbon-limiting environment.

Despite this, Gale crater may not have always been an organic carbon-limiting environment.
Evidence for oxidative post-depositional processing in the sediments [82] and the harsh radiation
environment at the surface could have degraded any indigenous organics. Therefore, it is possible that
the estimates of organic carbon at Gale crater are conservative, and there could have been sufficient
organic carbon present on early Mars to support heterotrophic microbial communities. The River Dee
site would therefore offer a plausible analogue environment with respect to organic carbon abundances.

One key difference between the analogue site and the majority of sediments at the ancient
lacustrine environment in Gale crater is the bulk phase mineralogy. The samples from the River Dee
estuary contained 63% quartz; Table 2 shows for Gale crater that the mineralogy of John Klein and
Cumberland drill sites, which are representative of altered basaltic host rock compositions, were instead
dominated by plagioclase feldspar. However, at Buckskin a rock with 40% SiO2-phases (tridymite
and cristobalite polymorphs) has been observed, with additional SiO2 contained in the amorphous
phase. This site contains ~75% SiO2, the River Dee site about 80%. Quartz and SiO2 phases, being
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almost pure silicon and oxygen, provide little in terms of bio-essential elements and so are unlikely
to exert any influence on the local microbial community [86,87]. In comparison, plagioclase feldspar
contains the bio-essential elements Na and Ca, and weathering (both abiotic and biotic) could increase
the dissolution of these elements making them bio-available [86–88]. The proportion of clay minerals
(potentially illite) in the analogue sample (23%) is comparable with samples of the Sheepbed Mudstone
from the John Klein (17–22%) and Cumberland (16–18%) drill holes [18,82], but clay is absent in the
silica-rich sample Buckskin [28], and more generally in the samples from the higher strata at Gale [27].
Clay minerals are rich in Al, Mg, Fe and K, of which Mg, Fe and K are essential elements for sustaining
microbial life [87]. The presence of such material in both the River Dee sample and the altered basaltic
mudstones at Sheepbed is suggestive of a similar nutritional environment.

Sanidine provides a further source of K. It is a high-temperature alkali feldspar and in all River
Dee samples represents detrital mineral, brought to the estuary from elsewhere. At Gale crater,
sanidine was present at abundances below 4% in the Sheepbed samples and absent at Lubango, but is
present at similar concentration (8–9%) at Buckskin on Mars and in the River Dee analogue samples.
The remaining trace minerals in the River Dee sample were dominated by titanohaematite, but also
include apatite and zircons. These provide a source of Fe and Ti, as well as P, a major bio-essential
mineral, which are also known to exist at Gale crater [89,90]. The Martian samples shown in Table 2
had lower proportions of haematite, but the supply of Fe is supplemented by the enhanced Fe content
of the clays, and Fe can also be supplied from minerals such as olivine and pyroxene.

The mineralogy of both the River Dee site and the comparable Martian sediments, despite
differences in detail, could provide the key bio-essential elements to sustain microbial life. Yet,
the discrepancy between the bulk mineralogy of the River Dee sample and the Martian basaltic
samples potentially indicates a more nutritionally favourable system in the Martian samples, with the
Na- and Ca-rich plagioclase feldspar taking the place of the relatively inert quartz in the River Dee
sample. In conjunction with the other environmental parameters discussed above, this indicates that
the River Dee estuary and the Gale crater lacustrine environment are largely similar, with the majority
of rocks at Gale crater potentially hosting a greater abundance of bio-essential elements (with the
exception of carbon), which could produce a larger biomass in the Martian environment.

4.2. An Analogue for Putative Life in Fluvio-Lacustrine System at Gale Crater?

Although there is some limitation in the application of the geology of the River Dee analogue site to
Gale crater, the reducing environment exposed to cyclic dryness with its resulting microbial community
provides a condition-specific model analogue for putative life in fluvio-lacustrine systems on early
Mars. The salinity, pH, anoxic conditions and temperature, are similar to the conditions that were
thought to exist within the fluvio-lacustrine—potentially stratified—system at Gale crater [10,12,18,22].
Clays at Yellowknife Bay (John Klein and Cumberland samples in Table 3 are examples) are thought
to have formed under circumneutral conditions from an olivine-dissolving reaction process [19,58].
Furthermore, the nutrient availability discussed above is similar, if not less, than the predicated values
at Gale crater. These physio-chemical conditions are known to play an important role influencing
microbial communities in terrestrial environments (e.g., [91]). Hence, the microbial community within
the anoxic inter-tidal zone of the River Dee site is a location- and situation-specific analogue for
studying putative life within fluvio-lacustrine systems on early Mars, especially under conditions of
changing lake levels and climate.

Molecular analysis of the analogue site demonstrated that the bacterial community was dominated
by the three taxa: Halioglobus, Caldilineaceae and Alteromonadaceae, which are commonly found in
marine environments [92–97]. The bacterial taxa identified were diverse and consisted of both
obligate and facultative anaerobes, with varying metabolism, for example chemolithoautotrophic and
chemoorganoheterotrophic. Members of the Halioglobus sp. have been isolated from seawaters in Japan
and have been shown to be capable of reducing nitrate to nitrogen [98]. The second most abundant
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taxa identified, Caldilineaceae, is more commonly associated with extreme environments and have also
been identified in a wastewater system [92,99,100].

The archaeal community was dominated by the taxa Nitrosopumilus, which can be identified to
genus level as Nitrosopumilus maritimus. Nitrosopumilus maritimus is extremely common in seawater
and obtains energy from chemolithoautotrophy [97]. The mixed metabolic capability of the microbial
community is consistent with the suggestion that mixed metabolism could have occurred on early
Mars [98].

To determine the feasibility of using this community for analogue studies in laboratory
based simulation experiments culturing was carried out. The isolation method that was used
selected for anaerobic microorganisms, which resulted in the isolation of members of the genera
Gammaproteobacteria, Clostridia and Bacilli. Growth experiments showed that each of the isolates
were able to grow in a simulated Mars gas headspace, at 15 ◦C, pH 7 and in 2% salinity, which based
on mineralogical studies are the estimated aqueous conditions at Gale crater [10,18,19].

Table 3. A mineralogical comparison between anaerobic zone of the River Dee sampling site and
four selected samples analysed at Gale crater as measured in the John Klein, Cumberland, Lubango,
and Buckskin drill holes. Data for John Klein and Cumberland from [18], Lubango from [24], Buckskin
from [27], River Dee this study. Unit: wt. %. * indicates that the value is a combination of abundances for
all minor fractions. † denotes that for the River Dee sample, titanohaematite is the main mineral. § The
value is for quartz in all samples except Buckskin, where the SiO2-phase comprises of 6.0% cristobalite,
34.1% tridymite; the amorphous material includes 6.0 wt. % Opal-CT. $ Note that the crystalline phase
is normalized to 100%, the amount of amorphous material and clay is given separately at the end of
the table.

John Klein Cumberland Lubango Buckskin River Dee

Plagioclase 44.8 41 43.2 42.8
Fe-forsterite 5.7 1.9

Augite 7.6 9
Pigeonite 11.3 16 5.9

Orthopyroxene 6.1 9 10.4
Magnetite 7.6 9 11.1 6.9
Anhydrite 5.3 12.3 1.8
Bassanite 2.1 1.2 9.0

Quartz/SiO2-phase § 0.9 0.2 3.5 40.1 63
Sanidine 2.4 3.5 8.4 9

Haematite † 1.2 1.3 2.3 5 *
Ilmenite 1.2

Akaganeite 2.3 3
Halite 0.3 0.3
Pyrite 0.6

Pyrrhotite 2 1.9
Amorphous $ 28 31 73 60

Clay $ 22 18 23

5. Summary and Conclusions

The aim of this study was to identify an analogue community that could be used to investigate
putative life in the lacustrine systems present on early Mars, using laboratory-based simulation
experiments. For this study, a sub-surface inter-tidal environment (River Dee Estuary, UK) was
selected and a comparison made to the Curiosity rover data from the ancient fluvio-lacustrine system
at Yellowknife Bay, Gale crater. Significantly, Gale crater Lake experienced a variation in conditions
including stratification, changes in lake depth and drying. The ensuing variation in salinity and water
availability parallels that of an estuarine system—albeit on different timescales.
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Temperature, redox and pH at the River Dee are comparable with the expected conditions
during clay formation at Yellowknife Bay; salinity was higher at the River Dee but an increase in
salinity is expected to have occurred during later or intermittent stages of the Gale crater Lake’s
evolution. Similarities in clay mineral abundance between the two sites imply similar access to
bio-essential elements (specifically Mg, Fe and K). However, the dominant mineralogy of the River
Dee sediments (predominantly quartz) does not compare with the feldspar-rich mineralogy of the
Gale crater sediments. Since quartz is not a source of any bio-essential element, but feldspar is a ready
source of K, this suggests a potentially more nutrient-limiting environment in the River Dee sediments
than would be likely in Gale crater.

The microbial community in the River Dee site consisted of common marine microorganisms,
which were able to survive, and grow, under physio-chemical conditions similar to that of the
lacustrine systems on early Mars. The identified taxa consisted of members that were able to utilise
chemolithoautotrophic and chemoorganoheterotrophic metabolisms. This mixed metabolic capability
is potentially feasible on Mars [96].

Future work is required to investigate the microbial processes that may have occurred
in ancient fluvio-lacustrine environments on Mars. This will involve growing the microbial
community under conditions that simulate the environmental and physical conditions of this
ancient environment. Such experiments may identify simulated fluvio-lacustrine experiments,
under laboratory-based condition, which could identify potential bio-signatures that could be used
for future life detection missions.
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