232 research outputs found

    Dehydroabietylamine-Based Cellulose Nanofibril Films : A New Class of Sustainable Biomaterials for Highly Efficient, Broad-Spectrum Antimicrobial Effects

    Get PDF
    The design of antimicrobial surfaces as integral parts of advanced biomaterials is nowadays a high research priority, as the accumulation of microorganisms on surfaces inflicts substantial costs on the health and industry sectors. At present, there is a growing interest in designing functional materials from polymers abundant in nature, such as cellulose, that combine sustainability with outstanding mechanical properties and economic production. There is also the need to find suitable replacements for antimicrobial silver-based agents due to environmental toxicity and spread of resistance to metal antimicrobials. Herein we report the unprecedented decoration of cellulose nanofibril (CNF) films with dehydroabietylamine 1 (CNF-CMC-1), to give an innovative contact-active surface active against Gram-positive and Gram-negative bacteria including the methicillin-resistant S. aureus MRSA14TK301, with low potential to spread resistance and good biocompatibility, all achieved with low surface coverage. CNF-CMC-1 was particularly effective against S. aureus ATCC12528, causing virtually complete reduction of the total cells from 10(5) colony forming units (CFU)/mL bacterial suspensions, after 24 h of contact. This gentle chemical modification of the surface of CNF fully retained the beneficial properties of the original film, including moisture buffering and strength, relevant in many potential applications. Our originally designed surface represents a new class of ecofriendly biomaterials that optimizes the performance of CNF by adding antimicrobial properties without the need for environmentally toxic silver.Peer reviewe

    Development of Type 1 Diabetes in Wild Bank Voles Associated With Islet Autoantibodies and the Novel Ljungan Virus

    Get PDF
    Wild bank voles (Clethrionomys glareolus) may develop diabetes in laboratory captivity. The aim of this study was to test whether bank voles develop type 1 diabetes in association with Ljungan virus. Two groups of bank voles were analyzed for diabetes, pancreas histology, autoantibodies to glutamic acid decarboxylase (GAD65), IA-2, and insulin by standardized radioligand-binding assays as well as antibodies to in vitro transcribed and translated Ljungan virus antigens. Group A represented 101 trapped bank voles, which were screened for diabetes when euthanized within 24 hours of capture. Group B represented 67 bank voles, which were trapped and kept in the laboratory for 1 month before being euthanized. Group A bank voles did not have diabetes. Bank voles in group B (22/67; 33%) developed diabetes due to specific lysis of pancreatic islet beta cells. Compared to nondiabetic group B bank voles, diabetic animals had increased levels of GAD65 (P < .0001), IA-2 (P < .0001), and insulin (P = .03) autoantibodies. Affected islets stained positive for Ljungan virus, a novel picorna virus isolated from bank voles. Ljungan virus inoculation of nondiabetic wild bank voles induced beta-cell lysis. Compared to group A bank voles, Ljungan virus antibodies were increased in both nondiabetic (P < .0001) and diabetic (P = .0015) group B bank voles. Levels of Ljungan virus antibodies were also increased in young age at onset of newly diagnosed type 1 diabetes in children (P < .01). These findings support the hypothesis that the development of type 1 diabetes in captured wild bank voles is associated with Ljungan virus. It is speculated that bank voles may have a possible zoonotic role as a reservoir and vector for virus that may contribute to the incidence of type 1 diabetes in humans

    Nanovesicles from Malassezia sympodialis and Host Exosomes Induce Cytokine Responses – Novel Mechanisms for Host-Microbe Interactions in Atopic Eczema

    Get PDF
    BACKGROUND: Intercellular communication can occur via the release of membrane vesicles. Exosomes are nanovesicles released from the endosomal compartment of cells. Depending on their cell of origin and their cargo they can exert different immunoregulatory functions. Recently, fungi were found to produce extracellular vesicles that can influence host-microbe interactions. The yeast Malassezia sympodialis which belongs to our normal cutaneous microbial flora elicits specific IgE- and T-cell reactivity in approximately 50% of adult patients with atopic eczema (AE). Whether exosomes or other vesicles contribute to the inflammation has not yet been investigated. OBJECTIVE: To investigate if M. sympodialis can release nanovesicles and whether they or endogenous exosomes can activate PBMC from AE patients sensitized to M. sympodialis. METHODS: Extracellular nanovesicles isolated from M. sympodialis, co-cultures of M. sympodialis and dendritic cells, and from plasma of patients with AE and healthy controls (HC) were characterised using flow cytometry, sucrose gradient centrifugation, Western blot and electron microscopy. Their ability to stimulate IL-4 and TNF-alpha responses in autologous CD14, CD34 depleted PBMC was determined using ELISPOT and ELISA, respectively. RESULTS: We show for the first time that M. sympodialis releases extracellular vesicles carrying allergen. These vesicles can induce IL-4 and TNF-α responses with a significantly higher IL-4 production in patients compared to HC. Exosomes from dendritic cell and M. sympodialis co-cultures induced IL-4 and TNF-α responses in autologous CD14, CD34 depleted PBMC of AE patients and HC while plasma exosomes induced TNF-α but not IL-4 in undepleted PBMC. CONCLUSIONS: Extracellular vesicles from M. sympodialis, dendritic cells and plasma can contribute to cytokine responses in CD14, CD34 depleted and undepleted PBMC of AE patients and HC. These novel observations have implications for understanding host-microbe interactions in the pathogenesis of AE

    Obesity, Metabolic Factors and Risk of Different Histological Types of Lung Cancer: A Mendelian Randomization Study

    Get PDF
    Background Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. Methods and findings We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01–1.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15–2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79–1.08]) (Pheterogeneity = 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84–0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25–2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. Conclusions Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior

    Identification of Genetically Predicted DNA Methylation Markers Associated with Non-small Cell Lung Cancer Risk among 34,964 Cases and 448,579 Controls

    Get PDF
    BACKGROUND: Although the associations between genetic variations and lung cancer risk have been explored, the epigenetic consequences of DNA methylation in lung cancer development are largely unknown. Here, the genetically predicted DNA methylation markers associated with non-small cell lung cancer (NSCLC) risk by a two-stage case-control design were investigated. METHODS: The genetic prediction models for methylation levels based on genetic and methylation data of 1595 subjects from the Framingham Heart Study were established. The prediction models were applied to a fixed-effect meta-analysis of screening data sets with 27,120 NSCLC cases and 27,355 controls to identify the methylation markers, which were then replicated in independent data sets with 7844 lung cancer cases and 421,224 controls. Also performed was a multi-omics functional annotation for the identified CpGs by integrating genomics, epigenomics, and transcriptomics and investigation of the potential regulation pathways. RESULTS: Of the 29,894 CpG sites passing the quality control, 39 CpGs associated with NSCLC risk (Bonferroni-corrected p ≤ 1.67 × 10 CONCLUSIONS: Sixteen promising DNA methylation markers associated with NSCLC were identified. Changes of the methylation level at these CpGs might influence the development of NSCLC by regulating the expression of genes nearby. PLAIN LANGUAGE SUMMARY: The epigenetic consequences of DNA methylation in lung cancer development are still largely unknown. This study used summary data of large-scale genome-wide association studies to investigate the associations between genetically predicted levels of methylation biomarkers and non-small cell lung cancer risk at the first time. This study looked at how well larotrectinib worked in adult patients with sarcomas caused by TRK fusion proteins. These findings will provide a unique insight into the epigenetic susceptibility mechanisms of lung cancer

    Identification of Susceptibility Pathways for the Role of Chromosome 15q25.1 in Modifying Lung Cancer Risk

    Get PDF
    Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer

    Gene–gene interaction of AhRwith and within the Wntcascade affects susceptibility to lung cancer

    Get PDF
    Background Aberrant Wnt signalling, regulating cell development and stemness, influences the development of many cancer types. The Aryl hydrocarbon receptor (AhR) mediates tumorigenesis of environmental pollutants. Complex interaction patterns of genes assigned to AhR/Wnt-signalling were recently associated with lung cancer susceptibility. Aim To assess the association and predictive ability of AhR/Wnt-genes with lung cancer in cases and controls of European descent. Methods Odds ratios (OR) were estimated for genomic variants assigned to the Wnt agonist and the antagonistic genes DKK2, DKK3, DKK4, FRZB, SFRP4 and Axin2. Logistic regression models with variable selection were trained, validated and tested to predict lung cancer, at which other previously identified SNPs that have been robustly associated with lung cancer risk could also enter the model. Furthermore, decision trees were created to investigate variant x variant interaction. All analyses were performed for overall lung cancer and for subgroups. Results No genome-wide significant association of AhR/Wnt-genes with overall lung cancer was observed, but within the subgroups of ever smokers (e.g., maker rs2722278 SFRP4; OR = 1.20; 95% CI 1.13-1.27; p = 5.6 x 10(-10)) and never smokers (e.g., maker rs1133683 Axin2; OR = 1.27; 95% CI 1.19-1.35; p = 1.0 x 10(-12)). Although predictability is poor, AhR/Wnt-variants are unexpectedly overrepresented in optimized prediction scores for overall lung cancer and for small cell lung cancer. Remarkably, the score for never-smokers contained solely two AhR/Wnt-variants. The optimal decision tree for never smokers consists of 7 AhR/Wnt-variants and only two lung cancer variants. Conclusions The role of variants belonging to Wnt/AhR-pathways in lung cancer susceptibility may be underrated in main-effects association analysis. Complex interaction patterns in individuals of European descent have moderate predictive capacity for lung cancer or subgroups thereof, especially in never smokers

    Obesity, Metabolic Factors and Risk of Different Histological Types of Lung Cancer: A Mendelian Randomization Study

    Get PDF
    Background: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. Methods and findings: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01–1.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15–2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79–1.08]) (Pheterogeneity = 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84–0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25–2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. Conclusions: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior

    Immune-mediated genetic pathways resulting in pulmonary function impairment increase lung cancer susceptibility

    Get PDF
    Impaired lung function is often caused by cigarette smoking, making it challenging to disentangle its role in lung cancer susceptibility. Investigation of the shared genetic basis of these phenotypes in the UK Biobank and International Lung Cancer Consortium (29,266 cases, 56,450 controls) shows that lung cancer is genetically correlated with reduced forced expiratory volume in one second (FEV1: r(g) = 0.098, p = 2.3 x 10(-8)) and the ratio of FEV1 to forced vital capacity (FEV1/FVC: r(g) = 0.137, p = 2.0 x 10(-12)). Mendelian randomization analyses demonstrate that reduced FEV1 increases squamous cell carcinoma risk (odds ratio (OR) = 1.51, 95% confidence intervals: 1.21-1.88), while reduced FEV1/FVC increases the risk of adenocarcinoma (OR = 1.17, 1.01-1.35) and lung cancer in never smokers (OR = 1.56, 1.05-2.30). These findings support a causal role of pulmonary impairment in lung cancer etiology. Integrative analyses reveal that pulmonary function instruments, including 73 novel variants, influence lung tissue gene expression and implicate immune-related pathways in mediating the observed effects on lung carcinogenesis
    corecore