16 research outputs found

    The Association of a SNP Upstream of INSIG2 with Body Mass Index is Reproduced in Several but Not All Cohorts

    Get PDF
    A SNP upstream of the INSIG2 gene, rs7566605, was recently found to be associated with obesity as measured by body mass index (BMI) by Herbert and colleagues. The association between increased BMI and homozygosity for the minor allele was first observed in data from a genome-wide association scan of 86,604 SNPs in 923 related individuals from the Framingham Heart Study offspring cohort. The association was reproduced in four additional cohorts, but was not seen in a fifth cohort. To further assess the general reproducibility of this association, we genotyped rs7566605 in nine large cohorts from eight populations across multiple ethnicities (total n = 16,969). We tested this variant for association with BMI in each sample under a recessive model using family-based, population-based, and case-control designs. We observed a significant (p < 0.05) association in five cohorts but saw no association in three other cohorts. There was variability in the strength of association evidence across examination cycles in longitudinal data from unrelated individuals in the Framingham Heart Study Offspring cohort. A combined analysis revealed significant independent validation of this association in both unrelated (p = 0.046) and family-based (p = 0.004) samples. The estimated risk conferred by this allele is small, and could easily be masked by small sample size, population stratification, or other confounders. These validation studies suggest that the original association is less likely to be spurious, but the failure to observe an association in every data set suggests that the effect of SNP rs7566605 on BMI may be heterogeneous across population samples

    PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology 52:904–912

    No full text
    Single nucleotide polymorphisms (SNPs) near 7 loci have been associated with liver function tests or with liver steatosis by magnetic resonance spectroscopy. In this study we aim to test whether these SNPs influence the risk of histologically-confirmed nonalcoholic fatty liver disease (NAFLD). We tested the association of histologic NAFLD with SNPs at 7 loci in 592 cases of European ancestry from the Nonalcoholic Steatohepatitis Clinical Research Network and 1405 ancestry-matched controls. The G allele of rs738409 in PNPLA3 was associated with increased odds of histologic NAFLD (odds ratio [OR] 5 3.26, 95% confidence intervals [CI] 5 2.11-7.21; P 5 3.6 3 10 243 ). In a case only analysis of G allele of rs738409 in PNPLA3 was associated with a decreased risk of zone 3 centered steatosis (OR 5 0.46, 95% CI 5 0.36-0.58; P 5 5.15 3 10 211 ). We did not observe any association of this variant with body mass index, triglyceride levels, high-and low-density lipoprotein levels, or diabetes (P &gt; 0.05). None of the variants at the other 6 loci were associated with NAFLD. Conclusion: Genetic variation at PNPLA3 confers a markedly increased risk of increasingly severe histological features of NAFLD, without a strong effect on metabolic syndrome component traits. (HEPATOLOGY 2010;52:904-912) See Editorial on Page 807 N onalcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease. It is frequently associated with obesity, insulin resistance and features of the metabolic syndrome. 1,2 The histologic phenotype of NAFLD extends from fatty liver to steatohepatitis

    Transferability of tag SNPs in genetic association studies in multiple populations

    No full text
    A general question for linkage disequilibrium-based association studies is how power to detect an association is compromised when tag SNPs are chosen from data in one population sample and then deployed in another sample. Specifically, it is important to know how well tags picked from the HapMap DNA samples capture the variation in other samples. To address this, we collected dense data uniformly across the four HapMap population samples and eleven other population samples. We picked tag SNPs using genotype data we collected in the HapMap samples and then evaluated the effective coverage of these tags in comparison to the entire set of common variants observed in the other samples. We simulated case-control association studies in the non-HapMap samples under a disease model of modest risk, and we observed little loss in power. These results demonstrate that the HapMap DNA samples can be used to select tags for genome-wide association studies in many samples around the world

    Rapid assessment of genetic ancestry in populations of unknown origin by genome-wide genotyping of pooled samples.

    Get PDF
    As we move forward from the current generation of genome-wide association (GWA) studies, additional cohorts of different ancestries will be studied to increase power, fine map association signals, and generalize association results to additional populations. Knowledge of genetic ancestry as well as population substructure will become increasingly important for GWA studies in populations of unknown ancestry. Here we propose genotyping pooled DNA samples using genome-wide SNP arrays as a viable option to efficiently and inexpensively estimate admixture proportion and identify ancestry informative markers (AIMs) in populations of unknown origin. We constructed DNA pools from African American, Native Hawaiian, Latina, and Jamaican samples and genotyped them using the Affymetrix 6.0 array. Aided by individual genotype data from the African American cohort, we established quality control filters to remove poorly performing SNPs and estimated allele frequencies for the remaining SNPs in each panel. We then applied a regression-based method to estimate the proportion of admixture in each cohort using the allele frequencies estimated from pooling and populations from the International HapMap Consortium as reference panels, and identified AIMs unique to each population. In this study, we demonstrated that genotyping pooled DNA samples yields estimates of admixture proportion that are both consistent with our knowledge of population history and similar to those obtained by genotyping known AIMs. Furthermore, through validation by individual genotyping, we demonstrated that pooling is quite effective for identifying SNPs with large allele frequency differences (i.e., AIMs) and that these AIMs are able to differentiate two closely related populations (HapMap JPT and CHB)

    Fine mapping of the association with obesity at the FTO locus in African-derived populations

    No full text
    Genome-wide association studies have identified many common genetic variants that are associated with polygenic traits, and have typically been performed with individuals of recent European ancestry. In these populations, many common variants are tightly correlated, with the perfect or near-perfect proxies for the functional or true variant showing equivalent evidence of association, considerably limiting the resolution of fine mapping. Populations with recent African ancestry often have less extensive and/or different patterns of linkage disequilibrium (LD), and have been proposed to be useful in fine-mapping studies. Here, we strongly replicate and fine map in populations of predominantly African ancestry the association between variation at the FTO locus and body mass index (BMI) that is well established in populations of European ancestry. We genotyped single nucleotide polymorphisms that are correlated with the signal of association in individuals of European ancestry but that have varying degrees of correlation in African-derived individuals. Most of the variants, including one previously proposed as functionally important, have no significant association with BMI, but two variants, rs3751812 and rs9941349, show strong evidence of association (P = 2.58 × 10−6 and 3.61 × 10−6 in a meta-analysis of 9881 individuals). Thus, we have both strongly replicated this association in African-ancestry populations and narrowed the list of potentially causal variants to those that are correlated with rs3751812 and rs9941349 in African-derived populations. This study illustrates the potential of using populations with different LD patterns to fine map associations and helps pave the way for genetically guided functional studies at the FTO locus
    corecore