84 research outputs found

    Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization

    Get PDF
    Modern high-throughput experiments provide a rich resource to investigate causal determinants of disease risk. Mendelian randomization (MR) is the use of genetic variants as instrumental variables to infer the causal effect of a specific risk factor on an outcome. Multivariable MR is an extension of the standard MR framework to consider multiple potential risk factors in a single model. However, current implementations of multivariable MR use standard linear regression and hence perform poorly with many risk factors. Here, we propose a two-sample multivariable MR approach based on Bayesian model averaging (MR-BMA) that scales to high-throughput experiments. In a realistic simulation study, we show that MR-BMA can detect true causal risk factors even when the candidate risk factors are highly correlated. We illustrate MR-BMA by analysing publicly-available summarized data on metabolites to prioritise likely causal biomarkers for age-related macular degeneration

    Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization

    Get PDF
    Funder: UK Medical Research Council (MC UU 00002/7) and Wellcome Trust and the Royal Society (Grant Number 204623/Z/16/Z)Abstract: Modern high-throughput experiments provide a rich resource to investigate causal determinants of disease risk. Mendelian randomization (MR) is the use of genetic variants as instrumental variables to infer the causal effect of a specific risk factor on an outcome. Multivariable MR is an extension of the standard MR framework to consider multiple potential risk factors in a single model. However, current implementations of multivariable MR use standard linear regression and hence perform poorly with many risk factors. Here, we propose a two-sample multivariable MR approach based on Bayesian model averaging (MR-BMA) that scales to high-throughput experiments. In a realistic simulation study, we show that MR-BMA can detect true causal risk factors even when the candidate risk factors are highly correlated. We illustrate MR-BMA by analysing publicly-available summarized data on metabolites to prioritise likely causal biomarkers for age-related macular degeneration

    Performance of classification systems for age-related macular degeneration in the rotterdam study

    Get PDF
    Purpose: To compare frequently used classification systems for age-related macular degeneration(AMD) in their abilty to predictlate AMD. Methods:Intotal,9066participantsfromthepopulation-basedRotterdamStudywere followedupforprogressionofAMDduringastudyperiodupto30years.AMDlesions weregradedoncolorfundusphotographsafterconfirmationonotherimagemodalities andgroupedatbaselineaccordingtosixclassificationsystems.LateAMDwasdefinedas geographicatrophyorchoroidalneovascularization.Incidencerate(IR)andcumulative incidence(CuI)oflateAMDwerecalculated,andKaplan-Meierplotsandareaunderthe operating characteristics curves(AUCs)wereconstructed. Results: A total of 186 persons developed incident late AMD during a mean follow-up timeof8.7years.TheAREDSsimplifiedscaleshowedthehighestIRforlateAMDat104 cases/1000 py for ages 75 years. The 3-Continent harmonization classification provided the most stable progression. Drusen area >10% ETDRS grid (hazard ratio 30.05, 95% confidence interval [CI] 19.25–46.91) was most prognostic of progression. The highest AUC of late AMD (0.8372, 95% CI: 0.8070-0.8673) was achieved when all AMD features present at base line were included. Conclusions: Highest turnover rates from intermediate to late AMD were provided by the AREDS simplified scale and the Rotterdam classification. The 3-Continent harmonization classification showed the most stable progression. All features, especially drusenarea,contribute to late AMD prediction. Translational Relevance: Findings will help stakeholders select appropriate classification systems for screening,deep learning algorithms, or trials

    A Deep Learning Model for Segmentation of Geographic Atrophy to Study Its Long-Term Natural History

    Get PDF
    __Purpose:__ To develop and validate a deep learning model for the automatic segmentation of geographic atrophy (GA) using color fundus images (CFIs) and its application to study the growth rate of GA. __Design:__ Prospective, multicenter, natural history study with up to 15 years of follow-up. __Participants:__ Four hundred nine CFIs of 238 eyes with GA from the Rotterdam Study (RS) and Blue Mountain Eye Study (BMES) for model development, and 3589 CFIs of 376 eyes from the Age-Related Eye Disease Study (AREDS) for analysis of GA growth rate. __Methods:__ A deep learning model based on an ensemble of encoder–decoder architectures was implemented and optimized for the segmentation of GA in CFIs. Four experienced graders delineated, in consensus, GA in CFIs from the RS and BMES. These manual delineations were used to evaluate the segmentation model using 5-fold cross-validation. The model was applied further to CFIs from the AREDS to study the growth rate of GA. Linear regression analysis was used to study associations between structural biomarkers at baseline and the GA growth rate. A general estimate of the progression of GA area over time was made by combining growth rates of all eyes with GA from the AREDS set. __Main Outcome Measures:__ Automatically segmented GA and GA growth rate. __Results:__ The model obtained an average Dice coefficient of 0.72±0.26 on the BMES and RS set while comparing the automatically segmented GA area with the graders’ manual delineations. An intraclass correlation coefficient of 0.83 was reached between the automatically estimated GA area and the graders’ consensus measures. Nine automatically calculated structural biomarkers (area, filled area, convex area, convex solidity, eccentricity, roundness, foveal involvement, perimeter, and circularity) were significantly associated with growth rate. Combining all growth rates indicated that GA area grows quadratically up to an area of approximately 12 mm2, after which growth rate stabilizes or decreases. __Conclusions:__ The deep learning model allowed for fully automatic and robust segmentation of GA on CFIs. These segmentations can be used to extract structural characteristics of GA that predict its growth rate

    Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future.

    Get PDF
    PURPOSE: Age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future. DESIGN: Meta-analysis of prevalence data. PARTICIPANTS: A total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe. METHODS: AMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV). MAIN OUTCOME MEASURES: Prevalence of early and late AMD, BCVA, and number of AMD cases. RESULTS: Prevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%-5.0%) in those aged 55-59 years to 17.6% (95% CI 13.6%-21.5%) in those aged ≥85 years; for late AMD these figures were 0.1% (95% CI 0.04%-0.3%) and 9.8% (95% CI 6.3%-13.3%), respectively. We observed a decreasing prevalence of late AMD after 2006, which became most prominent after age 70. Prevalences were similar for gender across all age groups except for late AMD in the oldest age category, and a trend was found showing a higher prevalence of CNV in Northern Europe. After 2006, fewer eyes and fewer ≥80-year-old subjects with CNV were visually impaired (P = 0.016). Projections of AMD showed an almost doubling of affected persons despite a decreasing prevalence. By 2040, the number of individuals in Europe with early AMD will range between 14.9 and 21.5 million, and for late AMD between 3.9 and 4.8 million. CONCLUSION: We observed a decreasing prevalence of AMD and an improvement in visual acuity in CNV occuring over the past 2 decades in Europe. Healthier lifestyles and implementation of anti-vascular endothelial growth factor treatment are the most likely explanations. Nevertheless, the numbers of affected subjects will increase considerably in the next 2 decades. AMD continues to remain a significant public health problem among Europeans

    Whole-Exome Sequencing in Age-Related Macular Degeneration Identifies Rare Variants in COL8A1, a Component of Bruch's Membrane

    Get PDF
    Purpose: Genome-wide association studies and targeted sequencing studies of candidate genes have identified common and rare variants that are associated with age-related macular degeneration (AMD). Whole-exome sequencing (WES) studies allow a more comprehensive analysis of rare coding variants across all genes of the genome and will contribute to a better understanding of the underlying disease mechanisms. To date, the number of WES studies in AMD case-control cohorts remains scarce and sample sizes are limited. To scrutinize the role of rare protein-altering variants in AMD cause, we performed the largest WES study in AMD to date in a large European cohort consisting of 1125 AMD patients and 1361 control participants. Design: Genome-wide case-control association study of WES data. Participants: One thousand one hundred twenty-five AMD patients and 1361 control participants. Methods: A single variant association test of WES data was performed to detect variants that are associated individually with AMD. The cumulative effect of multiple rare variants with 1 gene was analyzed using a gene-based CMC burden test. Immunohistochemistry was performed to determine the localization of the Col8a1 protein in mouse eyes. Main Outcome Measures: Genetic variants associated with AMD. Results: We detected significantly more rare protein-altering variants in the COL8A1 gene in patients (22/2250 alleles [1.0%]) than in control participants (11/2722 alleles [0.4%]; P = 7.07×10–5). The association of rare variants in the COL8A1 gene is independent of the common intergenic variant (rs140647181) near the COL8A1 gene previously associated with AMD. We demonstrated that the Col8a1 protein localizes at Bruch's membrane. Conclusions: This study supported a role for protein-altering variants in the COL8A1 gene in AMD pathogenesis. We demonstrated the presence of Col8a1 in Bruch's membrane, further supporting the role of COL8A1 variants in AMD pathogenesis. Protein-altering variants in COL8A1 may alter the integrity of Bruch's membrane, contributing to the accumulation of drusen and the development of AMD
    • …
    corecore