# Supplementary Information: Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization 

Verena Zuber ${ }^{1,2}$, Johanna Maria Colijn ${ }^{3,4}$, Caroline Klaver ${ }^{3,4,5}$, and Stephen Burgess ${ }^{1,6}$
${ }^{1}$ MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, UK
${ }^{2}$ Department of Epidemiology and Biostatistics, Imperial College London, UK
${ }^{3}$ Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
${ }^{4}$ Department of Ophthalmology, Erasmus University Medical
Center, Rotterdam, The Netherlands
${ }^{5}$ Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
${ }^{6}$ MRC/BHF Cardiovascular Epidemiology Unit, School of Clinical Medicine, University of Cambridge, UK

## Contents

1 Supplementary Figures 4

3 Supplementary Methods 35

## List of Tables

|  | Bias from the simulation study |  |
| :---: | :---: | :---: |
| 2 | Mean and standard deviation of the causal effect estimate from |  |
|  | the simulation study: Setting A | 21 |
| 3 | Mean and standard deviation of the causal effect estimate from |  |
|  | the simulation study: Setting B | 22 |
| 4 | Ranking of risk factors (top ten) for age-related macular degen- |  |
|  | eration including all variants | 3 |
| 5 | $q$-statistic for all genetic variants | 24 |
|  | Cook's distance for all genetic variants | 25 |
| 7 | Complete ranking of risk factors for age-related macular degen- |  |
|  | eration excluding outliers and influential points |  |
| 8 | $q$-statistic for $n=145$ genetic variants excluding LIPC, FUT2 |  |
|  | and $A P O E$ | 27 |
| 9 | Cook's distance for $n=145$ genetic variants excluding LIPC, |  |
|  | FUT2 and APOE | 28 |
| 10 | Parameter check: Prior probability | 29 |
| 11 | Parameter check: Prior variance | 30 |
| 12 | Ranking of risk factors for age-related macular degeneration using |  |
|  | IVW-regression | 31 |
| 13 | Ranking of risk factors for age-related macular degeneration using |  |
|  | Lars | 32 |
| 14 | Ranking of risk factors for age-related macular degeneration using |  |
|  | Lasso. |  |
| 15 | Ranking of risk factors for age-related macular degeneration using |  |
|  | Elastic Net |  |

## List of Figures

| 1 | Directed acyclic graph to illustrate the difference between total |
| :---: | :---: |
|  | and direct effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . |
| 2 | Genetic correlation between metabolite measurements based on |
|  | the $n=148$ genetic variants used as instrumental variables. |
|  | Receiver operating characteristic curve for setting A including a |
|  | samll number of risk factors ( $d=12$ ) |


| 4 Receiver operating characteristic curve for setting B including a |  |  |
| :---: | :---: | :---: |
|  | ors $(d=12)$ |  |
|  | Causal effect estimates for setting A including a small number of |  |
|  | risk factors $(d=12)$ |  |
|  | Causal effect estimates for setting B including a small number of |  |
|  | risk factors ( $d=12$ ) |  |
|  | Receiver operating characteristic curve for setting A including a |  |
|  | large number of risk factors ( $d=92$ ] . . . . . . . . |  |
|  | Receiver operating characteristic curve for setting B including a |  |
|  | large number of risk factors ( $d=92$ ) . . . . . . . . . . . . . |  |
| 9 | Causal effect estimate for setting A including a large number of |  |
|  | risk factors ( $d=92$ ] . . . . . . . . . . . . . . . . . . . . . . . . |  |
|  | Causal effect estimate for setting B including a large number of |  |
|  | risk factors ( $d=92$ ] . . . . . . . . . . . . . . . . . . . . . . . . |  |
|  | Genetic correlation between blood cell traits based on the $n=$ |  |
|  | 2667 genetic variants used as instrumental variables. . . . . . . . 12 |  |
|  | Receiver operating characteristic curve for setting A including |  |
|  | ( $d=33$ ) risk factors . . . . . . . . . . . . . . . . . . . . . . . . |  |
|  | Receiver operating characteristic curve for setting B including |  |
|  | ( $d=33$ ) risk factors . . . . . . . . . . . . . . . . . . . . . . . . . |  |
|  | Causal effect estimate for setting A for the blood cell traits $(d=33)$ |  |
| 15 | Causal effect estimate for setting B for the blood cell traits ( $d=33$ ) |  |
| 16 | Diagnostic plots of the predicted associations with AMD against |  |
|  | the observed associations with AMD . . . . . . . . . . . . . . . |  |
|  | Scatterplot of associations of the top risk factors against associ- |  |
|  | ations with the outcome . . . . . . . . . . . . . . . . . . . . . . |  |
|  | Diagnostic plots (part 1) of the predicted associations with AMD |  |
|  | against the observed associations with AMD after excluding the |  |
|  | LIPC, FUT2 and APOE gene regions . . . . . . . . . . . . . . . |  |
|  | Diagnostic plots (part 2) of the predicted associations with AMD |  |
|  | against the observed associations with AMD after excluding the |  |
|  | LIPC, FUT2 and APOE gene regions |  |

## 1 Supplementary Figures

a)


Total effect of $X_{1}$ on $Y: \theta_{1}+\alpha \theta_{2}$ Direct effect of $X_{1}$ on $Y$ : $\theta_{1}$
b)

$$
G \longrightarrow X_{1} \overrightarrow{\theta_{1}} X_{2} \overrightarrow{\theta_{2}} Y
$$

Total effect of $X_{1}$ on $Y: \theta_{1} \theta_{2}$ Direct effect of $X_{1}$ on $Y: 0$

Supplementary Figure 1: Directed acyclic graph to illustrate the difference between total and direct effect in two scenarios: a) mediation effect, where the risk factor $X_{1}$ has a direct and an indirect effect via the mediator $X_{2}$ on the outcome $Y$ and b ) signalling cascade where the effect of $X_{1}$ on the outcome is entirely mediated by $X_{2}$.


Supplementary Figure 2: Genetic correlation between metabolite measurements based on the $n=148$ genetic variants used as instrumental variables.


Supplementary Figure 3: Receiver operating characteristic (ROC) curve for setting A including a small number of risk factors $(d=12)$ of which four are true positive effects. Proportion of variance explained is set to 0.1 (left) 0.3 (middle) and 0.5 (right).


Supplementary Figure 4: Receiver operating characteristic (ROC) curve for setting B including a small number of risk factors $(d=12)$ of which eight are true positive effects (four postive and four negative effect direction). Proportion of variance explained is set to 0.1 (left) 0.3 (middle) and 0.5 (right).


Supplementary Figure 5: Boxplots of the causal effect estimates for setting A including a small number of risk factors $(d=12)$ of which the first four are true positive effects. The true causal effects are marked in red. From top left to bottom right are the competing approaches: IVW, MR-BMA, best model, Lars, Lasso, and Elastic Net. Proportion of variance explained is set to 0.3 .


Supplementary Figure 6: Boxplots of the causal effect estimates for setting B including a small number of risk factors $(d=12)$ of which the first four have a positive and final four have a negative causal effect. The true causal effects are marked in red. From top left to bottom right are the competing approaches: IVW, MR-BMA, best model, Lars, Lasso, and Elastic Net. Proportion of variance explained is set to 0.3 .


Supplementary Figure 7: Receiver operating characteristic (ROC) curve for setting A including a large number of risk factors $(d=92)$ of which four are true positive effects. Proportion of variance explained is set to 0.1 (left) 0.3 (middle) and 0.5 (right).


Supplementary Figure 8: Receiver operating characteristic (ROC) curve for setting B including a large number of risk factors $(d=92)$ of which eight are true positive effects (four postive and four negative effect direction). Proportion of variance explained is set to 0.1 (left) 0.3 (middle) and 0.5 (right).


Supplementary Figure 9: Boxplots of the causal effect estimates for setting A including a large number of risk factors $(d=92)$ of which the first four are true positive effects. Risk factors 11 to 92 are omitted. The true causal effects are marked in red. From top left to bottom right are the competing approaches: IVW, MR-BMA, best model, Lars, Lasso, and Elastic Net. Proportion of variance explained is set to 0.3 .


Supplementary Figure 10: Boxplots of the causal effect estimates for setting B including a large number of risk factors $(d=92)$ of which the first four have a positive and the final 4 have a negative causal effect. Risk factors 7 to 86 are omitted. The true causal effects are marked in red. From top left to bottom right are the competing approaches: IVW, MR-BMA, best model, Lars, Lasso, and Elastic Net. Proportion of variance explained is set to 0.3 .


Supplementary Figure 11: Genetic correlation between blood cell traits based on the $n=2667$ genetic variants used as instrumental variables.


Supplementary Figure 12: Receiver operating characteristic (ROC) curve for setting A including $(d=33)$ blood cell traits as risk factors of which four are true positive effects. Proportion of variance explained is set to 0.1 (left) 0.3 (middle) and 0.5 (right).


Supplementary Figure 13: Receiver operating characteristic (ROC) curve for setting B including $(d=33)$ blood cell traits as risk factors of which four have true positive effect and another four have true negative effect. Proportion of variance explained is set to 0.1 (left) 0.3 (middle) and 0.5 (right).


Supplementary Figure 14: Boxplots of the causal effect estimates for setting A for the blood cell traits ( $d=33$ ), of which the first four are true positive effects. The true causal effects are marked in red. From top left to bottom right are the competing approaches: IVW, MR-BMA, best model and Lars, Lasso and Elastic Net (all tuned with cross-validation). Proportion of variance explained is set to 0.3 .


Supplementary Figure 15: Boxplots of the causal effect estimates for setting B for the blood cell traits ( $d=33$ ), of which the first four have a positive and the last four have a negative causal effect. The true causal effects are marked in red. From top left to bottom right are the competing approaches: IVW, MR-BMA, best model and Lars, Lasso and Elastic Net (all tuned with cross-validation). Proportion of variance explained is set to 0.3


Supplementary Figure 16: Diagnostic plots for all genetic variants ( $n=148$ ) showing the predicted associations with AMD ( $x$-axis) based on model 2 (M2: LDL diameter (LDL.D) and TG in small VLDL (S.VLDL.TG)), model 3 (M3: LDL.D and Serum.TG), against the observed associations with AMD ( $y$-axis). Model 1 including LDL diameter (LDL.D), and TG content in small HDL (S.HDL.TG) is shown in the main manuscript. The colour code shows: left) the $q$-statistic for outliers and right) Cook's distance for the influential points. Any genetic variant with $q$-value larger than 10 or Cook's distance larger than the median is marked by a label indicating the gene region.


Supplementary Figure 17: Scatterplot for the final set of genetic variants ( $n=$ 145) plotting the association with A) XL.HDL.C and B) L.HDL.C on the $x$ axis against the association with AMD on the $y$-axis after excluding the LIPC, FUT2 and APOE gene regions. The model-averaged causal effect (MACE) of each risk factor on AMD is marked in red.


Supplementary Figure 18: Diagnostic plots for the final set of genetic variants ( $n=145$ ) showing the predicted associations with AMD ( $x$-axis) based on the best individual model 1 (M1: XL.HDL.C), model 2 (M2: L.HDL.C), model 3 (M3: XL.HDL.C and XS.VLDL.TG against the observed associations with AMD ( $y$-axis). The colour code shows: left) the $q$-statistic for outliers and right) Cook's distance for the influential points. Any genetic variant with $q$ value larger than 10 or Cook's distance larger than the median is marked by a label indicating the gene region. The LIPC, FUT2 and APOE gene regions have been removed prior to this analysis.


Supplementary Figure 19: Diagnostic plots for the final set of genetic variants ( $n=145$ ) showing the predicted associations with AMD ( $x$-axis) based on the best individual model 4 (M4: IDL.TG and XL.HDL.C), model 5 (M5: HDL.D) against the observed associations with AMD ( $y$-axis). The colour code shows: left) the $q$-statistic for outliers and right) Cook's distance for the influential points. Any genetic variant with $q$-value larger than 10 or Cook's distance larger than the median is marked by a label indicating the gene region. The LIPC, FUT2 and APOE gene regions have been removed prior to this analysis.

## 2 Supplementary Tables

Scenario 1: NMR metabolites, $d=12$ risk factors

|  | Setting A |  |  |  |  |  | Setting B |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\theta=0.3$ |  |  | $\theta=0$ |  |  | $\theta=0.3$ |  |  | $\theta=-0.3$ |  |  | $\theta=0$ |  |  |
| $R^{2}$ | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 |
| IVW | 0.0014 | -0.0099 | 0.0011 | -0.0023 | 0.0042 | -0.0007 | -0.0129 | 0.0012 | -0.0015 | 0.0063 | 0.0005 | -0.0031 | 0.0072 | 0.0035 | 0.0066 |
| Lars | -0.1496 | -0.1054 | -0.0743 | 0.0143 | 0.0179 | 0.0142 | -0.1742 | -0.1231 | -0.0892 | 0.1728 | 0.1230 | 0.0904 | 0.0014 | -0.0001 | -0.0011 |
| Lasso | -0.1337 | -0.0864 | -0.0628 | 0.0241 | 0.0235 | 0.0195 | -0.1678 | -0.1030 | -0.0730 | 0.1652 | 0.1038 | 0.0706 | 0.0010 | -0.0009 | 0.0025 |
| Elastic Net | -0.1229 | -0.0849 | -0.0641 | 0.0263 | 0.0247 | 0.0213 | -0.1470 | -0.0961 | -0.0664 | 0.1445 | 0.0962 | 0.0646 | 0.0000 | 0.0009 | 0.0022 |
| MR-BMA | -0.1263 | -0.0889 | -0.0625 | 0.0331 | 0.0297 | 0.0240 | -0.1739 | -0.1468 | -0.1309 | 0.1721 | 0.1462 | 0.1301 | -0.0006 | -0.0012 | 0.0007 |
| Best model | -0.1225 | -0.0724 | -0.0483 | 0.0297 | 0.0251 | 0.0189 | -0.1663 | -0.1282 | -0.1181 | 0.1610 | 0.1286 | 0.1205 | 0.0007 | -0.0017 | -0.0017 |


| Scenario 2: NMR metabolites, $d=92$ risk factors |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Setting A |  |  |  |  |  | Setting B |  |  |  |  |  |  |  |  |
|  | $\theta=0.3$ |  |  | $\theta=0$ |  |  | $\theta=0.3$ |  |  | $\theta=-0.3$ |  |  | $\theta=0$ |  |  |
| $R^{2}$ | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 |
| IVW | -0.1225 | 0.0181 | 0.0218 | -0.0309 | -0.0039 | -0.0122 | 0.0589 | -0.0054 | 0.0023 | 0.0006 | 0.0146 | 0.0199 | -0.00191 | -0.00087 | -0.00015 |
| Lars | -0.2484 | -0.2024 | -0.1864 | 0.0038 | 0.0054 | 0.0047 | -0.2562 | -0.2225 | -0.2042 | 0.2576 | 0.2245 | 0.2081 | 0.00045 | -0.00014 | -0.00012 |
| Lasso | -0.2593 | -0.2136 | -0.1881 | 0.0051 | 0.0070 | 0.0064 | -0.2685 | -0.2297 | -0.2051 | 0.2655 | 0.2297 | 0.2074 | 0.00014 | -0.00009 | -0.00001 |
| Elastic Net | -0.2534 | -0.2170 | -0.1947 | 0.0057 | 0.0072 | 0.0064 | -0.2620 | -0.2285 | -0.2072 | 0.2595 | 0.2291 | 0.2097 | 0.00024 | -0.00015 | -0.00001 |
| MR-BMA | -0.2557 | -0.2092 | -0.1724 | 0.0072 | 0.0078 | 0.0070 | -0.2700 | -0.2306 | -0.1965 | 0.2676 | 0.2307 | 0.2002 | 0.00012 | 0.00010 | -0.00012 |
| Best model | -0.2542 | -0.2026 | -0.1626 | 0.0070 | 0.0072 | 0.0068 | -0.2696 | -0.2272 | -0.1937 | 0.2634 | 0.2290 | 0.1973 | 0.00030 | 0.00007 | -0.00017 |
| Scenario 3: blood cell traits, $d=33$ risk factors |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Setting A |  |  |  |  |  | Setting B |  |  |  |  |  |  |  |  |
|  | $\theta=0.3$ |  |  | $\theta=0$ |  |  | $\theta=0.3$ |  |  | $\theta=-0.3$ |  |  | $\theta=0$ |  |  |
| $R^{2}$ | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 |
| IVW | -0.0027 | -0.0161 | -0.0082 | -0.0015 | -0.0021 | 0.0018 | 0.0030 | -0.0102 | -0.0091 | -0.0653 | -0.0052 | -0.0029 | 0.0186 | 0.0125 | 0.0167 |
| Lars | -0.1398 | -0.1080 | -0.0761 | 0.0039 | 0.0042 | 0.0037 | -0.1346 | -0.1192 | -0.1047 | 0.1499 | 0.1173 | 0.1082 | 0.0056 | 0.0125 | 0.0132 |
| Lasso | -0.1222 | -0.0974 | -0.0786 | 0.0058 | 0.0062 | 0.0049 | -0.1606 | -0.1407 | -0.1240 | 0.1670 | 0.1380 | 0.1256 | 0.0112 | 0.0120 | 0.0125 |
| Elastic Net | -0.1279 | -0.1033 | -0.0901 | 0.0062 | 0.0070 | 0.0064 | -0.1573 | -0.1394 | -0.1225 | 0.1591 | 0.1386 | 0.1235 | 0.0115 | 0.0118 | 0.0126 |
| MR-BMA | -0.1057 | -0.0637 | -0.0427 | 0.0073 | 0.0048 | 0.0029 | -0.1623 | -0.1332 | -0.1370 | 0.1641 | 0.1284 | 0.1393 | 0.0121 | 0.0118 | 0.0121 |
| Best model | -0.0898 | -0.0493 | -0.0310 | 0.0064 | 0.0036 | 0.0021 | -0.1591 | -0.1272 | -0.0999 | 0.1615 | 0.1196 | 0.1053 | 0.0126 | 0.0120 | 0.0119 |

Supplementary Table 1: Mean bias of the simulation study (1000 repetitions) for setting A (including four risk factors with positive causal effect $\theta=0.3$ and zero causal effect otherwise) and setting $B$ (including four risk factors with positive causal effect $\theta=0.3$ and four risk factor with negative causal effect $\theta=-0.3$ and zero causal effect otherwise). The data scenarios are: Scenario 1: NMR metabolites, $d=12$ risk factors, Scenario 2: NMR metabolites, $d=92$ risk factors, Scenario 3: blood cell traits, $d=33$ risk factors.

| Scenario 1: NMR metabolites, $d=12$ risk factors |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | $\theta=0.3$ |  |  | 0.5 | 0.0 | 0.1 |
| $R^{2}$ | 0.1 | 0.3 | 0.3 | 0.5 |  |  |
| IVW | $0.3014(0.8469)$ | $0.2901(0.4177)$ | $0.3011(0.2898)$ | $-0.0023(0.8066)$ | $0.0042(0.4051)$ | $-0.0007(0.2750)$ |
| Lars | $0.1504(0.3855)$ | $0.1946(0.2353)$ | $0.2257(0.1914)$ | $0.0143(0.3289)$ | $0.0179(0.1829)$ | $0.0142(0.1531)$ |
| Lasso | $0.1663(0.2660)$ | $0.2136(0.1889)$ | $0.2372(0.1504)$ | $0.0241(0.2139)$ | $0.0235(0.1458)$ | $0.0195(0.1029)$ |
| Elastic Net | $0.1771(0.2752)$ | $0.2151(0.1753)$ | $0.2359(0.1407)$ | $0.0263(0.2343)$ | $0.0247(0.1593)$ | $0.0213(0.1091)$ |
| MR-BMA | $0.1737(0.2087)$ | $0.2111(0.1632)$ | $0.2375(0.1351)$ | $0.0331(0.1419)$ | $0.0297(0.0904)$ | $0.0240(0.0641)$ |
| Best model | $0.1775(0.3202)$ | $0.2276(0.2282)$ | $0.2517(0.1662)$ | $0.0297(0.2191)$ | $0.0251(0.1365)$ | $0.0189(0.0897)$ |


| Scenario 2: NMR metabolites, $d=92$ risk factors |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | $\theta=0.3$ |  |  | 0.3 | 0.5 | 0.0 |
| $R^{2}$ | 0.1 | $0.1775(4.8910)$ | $0.3181(2.5256)$ | $0.3218(1.6537)$ | $-0.0309(4.8750)$ | $-0.0039(2.4965)$ |
| IVW | $0.0516(0.2159)$ | $0.0976(0.1936)$ | $0.1136(0.1576)$ | $0.0038(0.2026)$ | $0.0054(0.1484)$ | $0.0122(1.6604)$ |
| Lars | $0.0407(0.1091)$ | $0.0864(0.1262)$ | $0.1119(0.1311)$ | $0.0051(0.0575)$ | $0.0070(0.0468)$ | $0.0064(0.0848)$ |
| Lasso | $0.0402)$ |  |  |  |  |  |
| Elastic Net | $0.0466(0.1071)$ | $0.0830(0.1094)$ | $0.1053(0.1110)$ | $0.0057(0.0658)$ | $0.0072(0.0435)$ | $0.0064(0.0335)$ |
| MR-BMA | $0.0443(0.1107)$ | $0.0908(0.1345)$ | $0.1276(0.1420)$ | $0.0072(0.0436)$ | $0.0078(0.0369)$ | $0.0070(0.0325)$ |
| Best model | $0.0458(0.1887)$ | $0.0974(0.1977)$ | $0.1374(0.1951)$ | $0.0070(0.0899)$ | $0.0072(0.0737)$ | $0.0068(0.0629)$ |


| Scenario 3: blood cell traits, $d=33$ risk factors |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\theta=0.3$ |  |  | $\theta=0$ |  |  |
| $R^{2}$ | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 |
| IVW | 0.2973 (1.3937) | 0.2839 (0.6799) | 0.2918 (0.4254) | -0.0015 (1.2552) | -0.0021 (0.6499) | 0.0018 (0.4162) |
| Lars | 0.1602 (0.6386) | 0.1920 (0.3588) | 0.2239 (0.2404) | 0.0039 (0.5788) | 0.0042 (0.3341) | 0.0037 (0.2146) |
| Lasso | 0.1778 (0.1826) | 0.2026 (0.1336) | 0.2214 (0.1156) | 0.0058 (0.1080) | 0.0062 (0.0613) | 0.0049 (0.0429) |
| Elastic Net | 0.1721 (0.1672) | 0.1967 (0.1250) | 0.2099 (0.1063) | 0.0062 (0.1136) | 0.0070 (0.0690) | 0.0064 (0.0477) |
| MR-BMA | 0.1943 (0.1463) | 0.2363 (0.1187) | 0.2573 (0.0956) | 0.0073 (0.0545) | 0.0048 (0.0366) | 0.0029 (0.0263) |
| Best model | 0.2102 (0.2163) | 0.2507 (0.1521) | 0.2690 (0.1146) | 0.0064 (0.0835) | 0.0036 (0.0471) | 0.0021 (0.0335) |

Supplementary Table 2: Mean and standard deviation (in round brackets) of the causal effect estimate from the simulation study ( 1000 repetitions) for Setting A (including four risk factors with positive causal effect $\theta=0.3$ and zero causal effect otherwise). The data scenarios are: Scenario 1: NMR metabolites, $d=12$ risk factors, Scenario 2: NMR metabolites, $d=92$ risk factors, Scenario 3: blood cell traits, $d=33$ risk factors.

Scenario 1: NMR metabolites, $d=12$ risk factors

|  | $\theta=0.3$ |  |  | $\theta=-0.3$ |  |  | $\theta=0$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $R^{2}$ | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 |
| IVW | 0.2871 (0.777) | 0.3012 (0.384) | 0.2985 (0.250) | -0.2937 (0.752) | -0.2995 (0.406) | -0.3031 (0.245) | 0.0072 (0.785) | 0.0035 (0.417) | 0.0066 (0.258) |
| Lars | 0.1258 (0.380) | 0.1769 (0.238) | 0.2108 (0.196) | -0.1272 (0.365) | -0.1770 (0.251) | -0.2096 (0.185) | 0.0014 (0.361) | -0.0001 (0.210) | -0.0011 (0.151) |
| Lasso | 0.1322 (0.336) | 0.1970 (0.220) | 0.2270 (0.176) | -0.1348 (0.274) | -0.1962 (0.215) | -0.2294 (0.177) | 0.0010 (0.266) | -0.0009 (0.187) | 0.0025 (0.140) |
| Elastic Net | 0.1530 (0.354) | 0.2039 (0.212) | 0.2336 (0.171) | -0.1555 (0.296) | -0.2038 (0.208) | -0.2354 (0.168) | 0.0000 (0.305) | 0.0009 (0.193) | 0.0022 (0.142) |
| MR-BMA | 0.1261 (0.198) | 0.1532 (0.170) | 0.1691 (0.160) | -0.1279 (0.199) | -0.1538 (0.170) | -0.1699 (0.162) | -0.0006 (0.146) | -0.0012 (0.098) | 0.0007 (0.079) |
| Best model | 0.1337 (0.297) | 0.1718 (0.225) | 0.1819 (0.191) | -0.1390 (0.297) | -0.1714 (0.225) | -0.1795 (0.190) | 0.0007 (0.215) | -0.0017 (0.143) | -0.0017 (0.107) |


| Scenario 2: NMR metabolites, $d=92$ risk factors |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\theta=0.3$ |  |  | $\theta=-0.3$ |  |  | $\theta=0$ |  |  |
| $R^{2}$ | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 |
| IVW | 0.3589 (4.858) | 0.2946 (2.534) | 0.3023 (1.545) | -0.2994 (4.512) | -0.2854 (2.358) | -0.2801 (1.609) | -0.0019 (4.834) | -0.0009 (2.398) | -0.0002 (1.575) |
| Lars | 0.0438 (0.171) | 0.0775 (0.169) | 0.0958 (0.152) | -0.0424 (0.171) | -0.0755 (0.169) | -0.0919 (0.149) | 0.0005 (0.161) | -0.0001 (0.126) | -0.0001 (0.097) |
| Lasso | 0.0315 (0.107) | 0.0703 (0.122) | 0.0949 (0.130) | -0.0345 (0.108) | -0.0703 (0.123) | -0.0926 (0.128) | 0.0001 (0.060) | -0.0001 (0.054) | 0.0000 (0.049) |
| Elastic Net | 0.0380 (0.098) | 0.0715 (0.111) | 0.0928 (0.116) | -0.0405 (0.105) | -0.0709 (0.110) | -0.0903 (0.113) | 0.0002 (0.058) | -0.0002 (0.049) | 0.0000 (0.045) |
| MR-BMA | 0.0300 (0.097) | 0.0694 (0.127) | 0.1035 (0.139) | -0.0324 (0.099) | -0.0693 (0.126) | -0.0998 (0.136) | 0.0001 (0.043) | 0.0001 (0.041) | -0.0001 (0.037) |
| Best model | 0.0304 (0.150) | 0.0728 (0.174) | 0.1063 (0.173) | -0.0366 (0.170) | -0.0710 (0.172) | -0.1027 (0.172) | 0.0003 (0.085) | 0.0001 (0.074) | -0.0002 (0.063) |


| Scenario 3: blood cell traits, $d=33$ risk factors |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\theta=0.3$ |  |  | $\theta=-0.3$ |  |  | $\theta=0$ |  |  |
| $R^{2}$ | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 | 0.1 | 0.3 | 0.5 |
| IVW | 0.3030 (1.463) | 0.2898 (0.779) | 0.2909 (0.479) | -0.3653 (1.527) | -0.3052 (0.810) | -0.3029 (0.508) | 0.0066 (1.528) | 0.0005 (0.783) | 0.0047 (0.507) |
| Lars | 0.1654 (0.762) | 0.1808 (0.379) | 0.1953 (0.297) | -0.1501 (0.766) | -0.1827 (0.461) | -0.1918 (0.304) | -0.0064 (0.762) | 0.0005 (0.394) | 0.0012 (0.274) |
| Lasso | 0.1394 (0.206) | 0.1593 (0.164) | 0.1760 (0.149) | -0.1330 (0.188) | -0.1620 (0.167) | -0.1744 (0.149) | -0.0008 (0.159) | 0.0000 (0.105) | 0.0005 (0.078) |
| Elastic Net | 0.1427 (0.218) | 0.1606 (0.156) | 0.1775 (0.139) | -0.1409 (0.206) | -0.1614 (0.158) | -0.1765 (0.143) | -0.0005 (0.184) | -0.0002 (0.109) | 0.0006 (0.087) |
| MR-BMA | 0.1377 (0.177) | 0.1668 (0.150) | 0.1630 (0.151) | -0.1359 (0.173) | -0.1716 (0.155) | -0.1607 (0.149) | 0.0001 (0.096) | -0.0002 (0.072) | 0.0001 (0.053) |
| Best model | 0.1409 (0.266) | 0.1728 (0.203) | 0.2001 (0.180) | -0.1385 (0.252) | -0.1804 (0.204) | -0.1947 (0.177) | 0.0006 (0.160) | 0.0000 (0.102) | -0.0001 (0.078) |

Supplementary Table 3: Mean and standard deviation (in round brackets) of the causal effect estimate from the simulation study (1000 repetitions) for Setting B (including four risk factors with positive causal effect $\theta=0.3$ and four risk factor with negative causal effect $\theta=-0.3$ and zero causal effect otherwise). The data scenarios are: Scenario 1: NMR metabolites, $d=12$ risk factors, Scenario 2: NMR metabolites, $d=92$ risk factors, Scenario 3: blood cell traits, $d=33$ risk factors.

| A) Model averaging |  |  |  |
| :--- | ---: | ---: | ---: |
|  | risk factor | $M I P$ | $\hat{\theta}_{\text {MACE }}$ |
| 1 | LDL.D | 0.527 | -0.229 |
| 2 | XS.VLDL.TG | 0.247 | -0.124 |
| 3 | S.HDL.TG | 0.236 | -0.101 |
| 4 | IDL.TG | 0.213 | -0.108 |
| 5 | XXL.VLDL.TG | 0.188 | 0.095 |
| 6 | S.VLDL.TG | 0.175 | -0.070 |
| 7 | S.LDL.C | 0.137 | 0.059 |
| 8 | Serum.TG | 0.137 | -0.062 |
| 9 | Est.C | 0.097 | 0.030 |
| 10 | XL.HDL.C | 0.085 | 0.021 |
|  |  |  |  |

B) Individual models

|  | risk factor(s) | $P P$ | $\hat{\theta}_{\gamma}$ |
| :--- | ---: | ---: | ---: |
| 1 | LDL.D,S.HDL.TG | 0.062 | $-0.376,-0.398$ |
| 2 | LDL.D,S.VLDL.TG | 0.052 | $-0.485,-0.379$ |
| 3 | LDL.D,Serum.TG | 0.020 | $-0.454,-0.365$ |
| 4 | S.HDL.TG | 0.019 | -0.433 |
| 5 | Est.C,IDL.TG | 0.019 | $0.393,-0.625$ |
| 6 | LDL.D,XS.VLDL.TG | 0.018 | $-0.339,-0.324$ |
| 7 | XS.VLDL.TG | 0.017 | -0.373 |
| 8 | LDL.D,M.VLDL.TG | 0.014 | $-0.545,-0.408$ |
| 9 | S.HDL.TG,XXL.VLDL.TG | 0.013 | $-0.653,0.45$ |
| 10 | IDL.TG | 0.009 | -0.343 |

Supplementary Table 4: Ranking of risk factors (top ten) for age-related macular degeneration including all variants

Ranking of risk factors (top ten) for age-related macular degeneration according to their marginal inclusion probability (MIP) A) and the best ten individual models (sets of risk factors) according to their posterior probability $(P P) \mathrm{B})$. Calculation is based on all genetic variants $n=148$ including the LIPC region. $\hat{\theta}_{\gamma}$ is the causal effect estimate for a specific model and $\hat{\theta}_{\text {MACE }}$ is the model averaged causal effect of a risk factor.

|  | rs | region | $q \mathrm{M} 1$ | $q \mathrm{M} 2$ | $q \mathrm{M} 3$ | $\max q$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | rs6859 | APOE | 17.007 | 17.388 | 17.132 | 17.388 |
| 2 | rs492602 | FUT2 | 15.526 | 13.899 | 14.591 | 15.526 |
| 3 | rs4465830 | ZNF335 | 7.395 | 11.127 | 14.223 | 14.223 |
| 4 | rs174532 | MYRF | 11.939 | 11.078 | 11.517 | 11.939 |
| 5 | rs6489818 | MAPKAPK5 | 11.226 | 10.857 | 10.68 | 11.226 |
| 6 | rs103294 | AC245884.7 | 8.857 | 9.255 | 9.504 | 9.504 |
| 7 | rs3817588 | GCKR | 7.263 | 8.095 | 8.411 | 8.411 |
| 8 | rs261342 | LIPC | 7.11 | 8.107 | 5.747 | 8.107 |
| 9 | rs903319 | SLC2A2 | 8.06 | 6.567 | 6.276 | 8.06 |
| 10 | rs2587534 | AL160408.6 | 6.498 | 6.063 | 6.999 | 6.999 |
| 11 | rs2710642 | EHBP1 | 6.662 | 6.955 | 6.538 | 6.955 |
| 12 | rs9491696 | RSPO3 | 6.317 | 5.658 | 5.966 | 6.317 |
| 13 | rs1689797 | LINC01344 | 4.638 | 5.325 | 6.079 | 6.079 |
| 14 | rs6882076 | TIMD4 | 5.742 | 4.023 | 3.706 | 5.742 |
| 15 | rs8176720 | ABO | 5.415 | 4.972 | 5.334 | 5.415 |
| 16 | rs688 | LDLR | 4.85 | 5.178 | 4.694 | 5.178 |
| 17 | rs1781930 | AKR1C8P | 4.978 | 4.585 | 4.445 | 4.978 |
| 18 | rs702485 | DAGLB | 4.863 | 3.892 | 4.335 | 4.863 |
| 19 | rs38855 | MET | 4.636 | 3.896 | 4.858 | 4.858 |
| 20 | rs2925979 | CMIP | 4.66 | 4.516 | 4.243 | 4.66 |
| 21 | rs7703051 | HMGCR | 4.581 | 3.988 | 3.928 | 4.581 |
| 22 | rs2602836 | ADH5 | 3.724 | 4.357 | 4.528 | 4.528 |
| 23 | rs3741414 | INHBC | 3.873 | 4.434 | 4.158 | 4.434 |
| 24 | rs4148218 | ABCG8 | 3.967 | 3.592 | 3.666 | 3.967 |
| 25 | rs3822072 | FAM13A | 3.549 | 3.858 | 3.811 | 3.858 |
| 26 | rs5880 | CETP | 1.127 | 2.123 | 3.679 | 3.679 |
| 27 | rs6680658 | GALNT2 | 3.124 | 3.675 | 3.457 | 3.675 |
| 28 | rs9930333 | FTO | 3.351 | 3.428 | 3.04 | 3.428 |
| 29 | rs7225700 | THCAT158 | 3.127 | 3.305 | 3.381 | 3.381 |
| 30 | rs217386 | NPC1L1 | 1.959 | 3.311 | 2.665 | 3.311 |

Supplementary Table 5: This table displays the 30 variants with the largest maximum $q$ and the region they fall in based on all $n=148$ genetic variants for the best individual model 1 (M1: LDL.D and S.HDL.TG), model 2 (M2: LDL.D and S.VLDL.TG), and model 3 (M3: LDL.D and Serum.TG) and the maximum $q$ of each variant in all models used for diagnostics.

| rs |  | region | Cd M1 | $C d \mathrm{M} 2$ | Cd M3 | max $C d$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | rs261342 | LIPC | 0.989 | 1.087 | 0.871 | 1.087 |
| 2 | rs4465830 | ZNF335 | 0.188 | 0.108 | 0.056 | 0.188 |
| 3 | rs3817588 | GCKR | 0.058 | 0.085 | 0.105 | 0.105 |
| 4 | rs6859 | APOE | 0.081 | 0.076 | 0.087 | 0.087 |
| 5 | rs5880 | CETP | 0.056 | 0.071 | 0.081 | 0.081 |
| 6 | rs174532 | MYRF | 0.062 | 0.062 | 0.061 | 0.062 |
| 7 | rs686030 | TTC39B | 0.054 | 0.04 | 0.052 | 0.054 |
| 8 | rs7703051 | HMGCR | 0.039 | 0.045 | 0.05 | 0.05 |
| 9 | rs103294 | AC245884.7 | 0.045 | 0.044 | 0.044 | 0.045 |
| 10 | rs10401969 | SUGP1 | 0.009 | 0.025 | 0.043 | 0.043 |
| 11 | rs1689797 | LINC01344 | 0.037 | 0.031 | 0.026 | 0.037 |
| 12 | rs2710642 | EHBP1 | 0.031 | 0.033 | 0.03 | 0.033 |
| 13 | rs2587534 | AL160408.6 | 0.02 | 0.018 | 0.024 | 0.024 |
| 14 | rs10493326 | DOCK7 | 0.011 | 0.017 | 0.023 | 0.023 |
| 15 | rs894210 | intergenic | 0.015 | 0.022 | 0.02 | 0.022 |
| 16 | rs6882076 | TIMD4 | 0.006 | 0.016 | 0.02 | 0.02 |
| 17 | rs903319 | SLC2A2 | 0.02 | 0.008 | 0.007 | 0.02 |
| 18 | rs515135 | APOB(intergenic) | 0.019 | 0.011 | 0.012 | 0.019 |
| 19 | rs799160 | intergenic | 0.017 | 0.016 | 0.019 | 0.019 |
| 20 | rs3741414 | INHBC | 0.01 | 0.016 | 0.013 | 0.016 |
| 21 | rs1515110 | NR | 0.014 | 0.01 | 0.007 | 0.014 |
| 22 | rs1800562 | HFE | 0.01 | 0.012 | 0.012 | 0.012 |
| 23 | rs2068888 | CYP26A1 | 0.012 | 0.011 | 0.011 | 0.012 |
| 24 | rs7225700 | THCAT158 | 0.011 | 0.012 | 0.012 | 0.012 |
| 25 | rs492602 | FUT2 | 0.011 | 0.002 | 0.005 | 0.011 |
| 26 | rs38855 | MET | 0.008 | 0.003 | 0.01 | 0.01 |
| 27 | rs688 | LDLR | 0.007 | 0.01 | 0.006 | 0.01 |
| 28 | rs6680658 | GALNT2 | 0.005 | 0.01 | 0.009 | 0.01 |
| 29 | rs3198697 | PDXDC1 | 0.007 | 0.01 | 0.01 | 0.01 |
| 30 | rs2326077 | intergenic | 0.006 | 0.006 | 0.01 | 0.01 |
|  | threshold |  | 0.696 | 0.696 | 0.696 |  |

Supplementary Table 6: This table displays the 30 variants with the largest maximum Cook's distance ( $C d$ ) and the region they fall based on all $n=148$ genetic variants including LIPC for the best individual model 1 (M1: LDL.D and S.HDL.TG), model 2 (M2: LDL.D and S.VLDL.TG), and model 3 (M3: LDL.D and Serum.TG). The final line gives the suggested cut-off for Cook's distance and variants with $C d$ above this threshold are given in bold.

|  |  |  |  |
| :--- | ---: | ---: | ---: |
|  | risk factor | $M I P$ | $\hat{\theta}_{\mathrm{MACE}}$ |
| 1 | XL.HDL.C | 0.700 | 0.344 |
| 2 | L.HDL.C | 0.229 | 0.087 |
| 3 | HDL.D | 0.087 | 0.022 |
| 4 | XS.VLDL.TG | 0.082 | -0.019 |
| 5 | LDL.D | 0.074 | -0.018 |
| 6 | IDL.TG | 0.066 | -0.012 |
| 7 | XXL.VLDL.TG | 0.063 | 0.018 |
| 8 | S.VLDL.TG | 0.062 | -0.014 |
| 9 | Serum.TG | 0.061 | -0.014 |
| 10 | Serum.C | 0.054 | -0.011 |
| 11 | HDL.C | 0.051 | 0.009 |
| 12 | M.HDL.C | 0.048 | -0.010 |
| 13 | S.HDL.TG | 0.047 | -0.006 |
| 14 | XL.HDL.TG | 0.045 | 0.005 |
| 15 | M.VLDL.C | 0.043 | -0.005 |
| 16 | S.VLDL.C | 0.043 | -0.005 |
| 17 | ApoA1 | 0.040 | -0.007 |
| 18 | M.VLDL.TG | 0.039 | 0.006 |
| 19 | ApoB | 0.038 | -0.004 |
| 20 | L.VLDL.C | 0.038 | -0.005 |
| 21 | XL.VLDL.TG | 0.034 | -0.003 |
| 22 | L.VLDL.TG | 0.033 | -0.001 |
| 23 | S.LDL.C | 0.033 | 0.001 |
| 24 | LDL.C | 0.031 | -0.003 |
| 25 | IDL.C | 0.029 | -0.001 |
| 26 | SM | 0.027 | -0.003 |
| 27 | VLDL.D | 0.027 | 0.002 |
| 28 | Tot.FA | 0.026 | -0.001 |
| 29 | Est.C | 0.026 | 0.001 |
| 30 | TotPG | 0.026 | -0.002 |
|  |  |  |  |
|  |  |  |  |

Supplementary Table 7: Ranking of risk factors for age-related macular degeneration according to their marginal inclusion probability (MIP) after excluding genetic variants in the LIPC, FUT2 and APOE region ( $n=145$ ). Abbreviations: $M I P=$ marginal inclusion probability, MACE $=$ model-averaged causal effect.

|  |  | rs | region | Q M1 | Q M2 | Q M3 | Q M4 | Q M5 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | max Q 9

Supplementary Table 8: This table displays the 30 variants with the largest maximum $q$-statistic and the region they fall in based on $n=145$ genetic variants after excluding LIPC, FUT2 and APOE for the best individual model 1 (M1: XL.HDL.C), model 2 (M2: L.HDL.C), model 3 (M3: XL.HDL.C and XS.VLDL.TG), model 4 (M4: IDL.TG and XL.HDL.C), model 5 (M5: HDL.D), and the maximum $q$-statistic of each variant in all models used for diagnostics.

|  |  | rs | region | $C d \mathrm{M} 1$ | $C d \mathrm{M} 2$ | $C d \mathrm{M} 3$ | $C d \mathrm{M} 4$ | $C d \mathrm{M} 5$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | max $C d$

Supplementary Table 9: This table displays the 30 variants with the largest maximum Cook's distance ( $C d$ ) and the region they fall in based on $n=145$ genetic variants after excluding LIPC, FUT2 and APOE for the best individual model 1 (M1: XL.HDL.C), model 2 (M2: L.HDL.C), model 3 (M3: XL.HDL.C and XS.VLDL.TG), model 4 (M4: IDL.TG and XL.HDL.C), model 5 (M5: HDL.D), the final line gives the suggested cut-off for Cook's distance and this time, there are no variants with $C d$ above this threshold.

| $p=0.01$ |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | risk factor | MIP | $\hat{\theta}_{\text {MACE }}$ |
| 1 | XL.HDL.C | 0.608 | 0.308 |
| 2 | L.HDL.C | 0.283 | 0.109 |
| 3 | HDL.D | 0.087 | 0.030 |
| 4 | HDL.C | 0.024 | 0.008 |
| 5 | XS.VLDL.TG | 0.011 | -0.002 |
| 6 | IDL.TG | 0.009 | -0.002 |
| 7 | S.HDL.TG | 0.009 | -0.002 |
| 8 | LDL.D | 0.007 | -0.002 |
| 9 | Serum.C | 0.007 | -0.001 |
| 10 | S.VLDL.TG | 0.007 | -0.001 |
| $p=0.05$ |  |  |  |
| \# | risk factor | MIP | $\hat{\theta}_{\text {MACE }}$ |
| 1 | XL.HDL.C | 0.663 | 0.330 |
| 2 | L.HDL.C | 0.249 | 0.095 |
| 3 | HDL.D | 0.084 | 0.026 |
| 4 | XS.VLDL.TG | 0.047 | -0.010 |
| 5 | IDL.TG | 0.040 | -0.007 |
| 6 | LDL.D | 0.037 | -0.008 |
| 7 | HDL.C | 0.035 | 0.008 |
| 8 | S.VLDL.TG | 0.032 | -0.006 |
| 9 | Serum.C | 0.030 | -0.005 |
| 10 | Serum.TG | 0.029 | -0.006 |
| $p=0.1$ |  |  |  |
| \# | risk factor | MIP | $\hat{\theta}_{\text {MACE }}$ |
| 1 | XL.HDL.C | 0.70 | 0.34 |
| 2 | L.HDL.C | 0.23 | 0.09 |
| 3 | HDL.D | 0.09 | 0.02 |
| 4 | XS.VLDL.TG | 0.08 | -0.02 |
| 5 | LDL.D | 0.07 | -0.02 |
| 6 | IDL.TG | 0.07 | -0.01 |
| 7 | S.VLDL.TG | 0.06 | -0.01 |
| 8 | XXL.VLDL.TG | 0.06 | 0.02 |
| 9 | Serum.TG | 0.06 | -0.01 |
| 10 | Serum.C | 0.05 | -0.01 |
| $p=0.2$ |  |  |  |
| \# | risk factor | MIP | $\hat{\theta}_{\text {MACE }}$ |
| 1 | XL.HDL.C | 0.700 | 0.344 |
| 2 | L.HDL.C | 0.229 | 0.087 |
| 3 | HDL.D | 0.087 | 0.022 |
| 4 | XS.VLDL.TG | 0.082 | -0.019 |
| 5 | LDL.D | 0.075 | -0.018 |
| 6 | IDL.TG | 0.067 | -0.013 |
| 7 | S.VLDL.TG | 0.062 | -0.014 |
| 8 | XXL.VLDL.TG | 0.061 | 0.018 |
| 9 | Serum.TG | 0.061 | -0.014 |
| 10 | Serum.C | 0.053 | -0.010 |
| $p=0.3$ |  |  |  |
| \# | risk factor | MIP | $\hat{\theta}_{\text {MACE }}$ |
| 1 | XL.HDL.C | 0.675 | 0.315 |
| 2 | L.HDL.C | 0.302 | 0.126 |
| 3 | XXL.VLDL.TG | 0.300 | 0.121 |
| 4 | LDL.D | 0.244 | -0.073 |
| 5 | Serum.TG | 0.212 | -0.065 |
| 6 | XS.VLDL.TG | 0.197 | -0.052 |
| 7 | S.VLDL.TG | 0.190 | -0.053 |
| 8 | M.VLDL.TG | 0.173 | 0.048 |
| 9 | Serum. 89 | 0.165 | -0.053 |
| 10 | ApoA1 ${ }^{9}$ | 0.152 | -0.038 |

Supplementary Table 10: Parameter check for the prior probability $p$, ranging from $p=0.01$ to $p=0.3$. This reflects 0.3 to 9 expected causal risk factors. The main analysis used $p=0.1$ reflecting an a priori expected number of 3 causal risk factors. Abbreviations: $M I P=$ marginal inclusion probability, MACE $=$ model averaged causal effect.

| $\sigma=0.1$ |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | risk factor | MIP | $\hat{\theta}_{\text {MACE }}$ |
| 1 | XL.HDL.C | 0.52 | 0.13 |
| 2 | L.HDL.C | 0.42 | 0.09 |
| 3 | HDL.D | 0.27 | 0.05 |
| 4 | LDL.D | 0.15 | -0.02 |
| 5 | HDL.C | 0.14 | 0.02 |
| 6 | XS.VLDL.TG | 0.13 | -0.02 |
| 7 | S.HDL.TG | 0.13 | -0.02 |
| 8 | S.VLDL.TG | 0.11 | -0.01 |
| 9 | IDL.TG | 0.10 | -0.01 |
| 10 | Serum.TG | 0.09 | -0.01 |
| $\sigma=0.3$ |  |  |  |
| \# | risk factor | MIP | $\hat{\theta}_{\text {MACE }}$ |
| 1 | XL.HDL.C | 0.69 | 0.32 |
| 2 | L.HDL.C | 0.25 | 0.09 |
| 3 | XS.VLDL.TG | 0.11 | -0.02 |
| 4 | HDL.D | 0.11 | 0.03 |
| 5 | LDL.D | 0.10 | -0.02 |
| 6 | IDL.TG | 0.08 | -0.01 |
| 7 | S.VLDL.TG | 0.08 | -0.02 |
| 8 | XXL.VLDL.TG | 0.08 | 0.02 |
| 9 | Serum.TG | 0.07 | -0.01 |
| 10 | S.HDL.TG | 0.06 | -0.01 |
| $\sigma=0.5$ |  |  |  |
| \# | risk factor | MIP | $\hat{\theta}_{\text {MACE }}$ |
| 1 | XL.HDL.C | 0.70 | 0.34 |
| 2 | L.HDL.C | 0.23 | 0.09 |
| 3 | HDL.D | 0.09 | 0.02 |
| 4 | XS.VLDL.TG | 0.08 | -0.02 |
| 5 | LDL.D | 0.07 | -0.02 |
| 6 | IDL.TG | 0.07 | -0.01 |
| 7 | S.VLDL.TG | 0.06 | -0.01 |
| 8 | XXL.VLDL.TG | 0.06 | 0.02 |
| 9 | Serum.TG | 0.06 | -0.01 |
| 10 | Serum.C | 0.05 | -0.01 |
| $\sigma=0.7$ |  |  |  |
| \# | risk factor | MIP | $\hat{\theta}_{\text {MACE }}$ |
| 1 | XL.HDL.C | 0.69 | 0.35 |
| 2 | L.HDL.C | 0.23 | 0.09 |
| 3 | HDL.D | 0.08 | 0.02 |
| 4 | XS.VLDL.TG | 0.07 | -0.02 |
| 5 | LDL.D | 0.06 | -0.01 |
| 6 | IDL.TG | 0.05 | -0.01 |
| 7 | S.VLDL.TG | 0.05 | -0.01 |
| 8 | Serum.TG | 0.05 | -0.01 |
| 9 | XXL.VLDL.TG | 0.05 | 0.02 |
| 10 | Serum.C | 0.05 | -0.01 |

Supplementary Table 11: Parameter check for the prior variance $\sigma^{2}$, ranging from $\sigma=0.1$ to $\sigma=0.7$. The main analysis used $\sigma=0.5$. Abbreviations: $M I P=$ marginal inclusion probability, MACE=model-averaged causal effect.

|  | risk factor | beta | $p$-value |
| :--- | ---: | ---: | ---: |
| 1 | Serum.C | -2.033 | 0.004 |
| 2 | LDL.C | -1.808 | 0.014 |
| 3 | IDL.C | 2.156 | 0.014 |
| 4 | XXL.VLDL.TG | 1.075 | 0.015 |
| 5 | M.VLDL.TG | 1.769 | 0.019 |
| 6 | LDL.D | -0.937 | 0.032 |
| 7 | S.LDL.C | 1.302 | 0.064 |
| 8 | S.VLDL.C | 1.046 | 0.066 |
| 9 | L.HDL.C | 1.350 | 0.129 |
| 10 | S.HDL.TG | 0.562 | 0.175 |
| 11 | SM | -0.221 | 0.223 |
| 12 | VLDL.D | -0.497 | 0.250 |
| 13 | ApoA1 | -0.390 | 0.318 |
| 14 | XS.VLDL.TG | -1.015 | 0.330 |
| 15 | M.VLDL.C | -0.856 | 0.339 |
| 16 | Tot.FA | 0.350 | 0.359 |
| 17 | L.VLDL.TG | -0.616 | 0.371 |
| 18 | TotPG | -0.246 | 0.470 |
| 19 | Serum.TG | -0.771 | 0.525 |
| 20 | XL.VLDL.TG | -0.302 | 0.605 |
| 21 | IDL.TG | 0.398 | 0.654 |
| 22 | ApoB | 0.273 | 0.658 |
| 23 | L.VLDL.C | -0.241 | 0.670 |
| 24 | M.HDL.C | 0.098 | 0.814 |
| 25 | Est.C | 0.082 | 0.828 |
| 26 | HDL.C | -0.193 | 0.838 |
| 27 | XL.HDL.TG | 0.083 | 0.850 |
| 28 | XL.HDL.C | 0.079 | 0.868 |
| 29 | S.VLDL.TG | 0.066 | 0.932 |
| 30 | HDL.D | -0.029 | 0.958 |
|  |  |  |  |

Supplementary Table 12: Ranking of risk factors for age-related macular degeneration using inverse-variance weighted (IVW) regression according to their $p-$ value after excluding genetic variants in the LIPC, FUT2 and APOE region $n=145$. Abbreviations: beta=causal effect, $\mathrm{p}=p$-value of the causal effect (not adjusted for multiple testing).

|  | risk factor | beta L1 |
| :--- | ---: | ---: |
| 1 | L.HDL.C | 0.357 |
| 2 | LDL.D | -0.255 |
| 3 | XXL.VLDL.TG | 0.251 |
| 4 | S.VLDL.TG | -0.170 |
| 5 | M.HDL.C | -0.157 |
| 6 | XL.HDL.C | 0.115 |
| 7 | XL.VLDL.TG | -0.104 |
| 8 | ApoA1 | -0.093 |
| 9 | Est.C | 0.062 |
| 10 | Serum.TG | -0.010 |
| 11 | SM | -0.005 |
|  | ADoB | 0 |
|  | HDL.C | 0 |
|  | HDL.D | 0 |
|  | IDL.C | 0 |
|  | IDL.TG | 0 |
|  | L.VLDL.C | 0 |
|  | L.VLDL.TG | 0 |
|  | LDL.C | 0 |
|  | M.VLDL.C | 0 |
|  | M.VLDL.TG | 0 |
|  | S.HDL.TG | 0 |
|  | S.LDL.C | 0 |
|  | S.VLDL.C | 0 |
|  | Serum.C | 0 |
|  | Tot.FA | 0 |
|  | TotPG | 0 |
|  | VLDL.D | 0 |
|  | XL.VDL.TG | 0 |
|  |  | 0 |
|  |  |  |

Supplementary Table 13: Ranking of risk factors for age-related macular degeneration using Lars regression according to their L1 regularised causal effect estimate after excluding genetic variants in the LIPC, FUT2 and APOE region $n=145$. Abbreviations: beta L1=L1 regularised causal effect.

|  | risk factor | beta L1 |
| :---: | :---: | :---: |
| 1 | XL.HDL.C | 0.306 |
| 2 | XS.VLDL.TG | -0.102 |
| 3 | L.HDL.C | 0.092 |
| 4 | LDL.D | -0.039 |
|  | ApoA1 | 0 |
|  | ApoB | 0 |
|  | Est.C | 0 |
|  | HDL.C | 0 |
|  | HDL.D | 0 |
|  | IDL.C | 0 |
|  | IDL.TG | 0 |
|  | L.VLDL.C | 0 |
|  | L.VLDL.TG | 0 |
|  | LDL.C | 0 |
|  | M.HDL.C | 0 |
|  | M.VLDL.C | 0 |
|  | M.VLDL.TG | 0 |
|  | S.HDL.TG | 0 |
|  | S.LDL.C | 0 |
|  | S.VLDL.C | 0 |
|  | S.VLDL.TG | 0 |
|  | Serum.C | 0 |
|  | Serum.TG | 0 |
|  | SM | 0 |
|  | Tot.FA | 0 |
|  | TotPG | 0 |
|  | VLDL.D | 0 |
|  | XL.HDL.TG | 0 |
|  | XL.VLDL.TG | 0 |
|  | XXL.VLDL.TG | 0 |

Supplementary Table 14: Ranking of risk factors for age-related macular degeneration using Lasso regression (L1 penalty) according to their regularised causal effect estimate after excluding genetic variants in the LIPC, FUT2 and APOE region $n=145$. Abbreviations: beta $\mathrm{L} 1=\mathrm{L} 1$ regularised causal effect.

|  | risk factor | beta L1+L2 |
| :---: | :---: | :---: |
| 1 | L.HDL.C | 0.269 |
| 2 | XL.HDL.C | 0.176 |
| 3 | LDL.D | -0.172 |
| 4 | M.HDL.C | -0.137 |
| 5 | XXL.VLDL.TG | 0.117 |
| 6 | XS.VLDL.TG | -0.102 |
| 7 | S.VLDL.TG | -0.090 |
| 8 | Est.C | 0.065 |
| 9 | ApoA1 | -0.052 |
| 10 | Serum.C | -0.010 |
|  | ApoB | 0 |
|  | HDL.C | 0 |
|  | HDL.D | 0 |
|  | IDL.C | 0 |
|  | IDL.TG | 0 |
|  | L.VLDL.C | 0 |
|  | L.VLDL.TG | 0 |
|  | LDL.C | 0 |
|  | M.VLDL.C | 0 |
|  | M.VLDL.TG | 0 |
|  | S.HDL.TG | 0 |
|  | S.LDL.C | 0 |
|  | S.VLDL.C | 0 |
|  | Serum.TG | 0 |
|  | SM | 0 |
|  | Tot.FA | 0 |
|  | TotPG | 0 |
|  | VLDL.D | 0 |
|  | XL.HDL.TG | 0 |
|  | XL.VLDL.TG | 0 |

Supplementary Table 15: Ranking of risk factors for age-related macular degeneration using Elastic Net regression (L1 +L 2 penalty) according to their regularised causal effect estimate after excluding genetic variants in the LIPC, FUT2 and $A P O E$ region $n=145$. Abbreviations: beta $\mathrm{L} 1+\mathrm{L} 2=\mathrm{L} 1$ and L 2 regularised causal effect.

## 3 Supplementary Methods

## Derivation of Bayes factors for a set of risk factors

In this note, we derive a closed form expression for the Bayes factor that quantifies the evidence for a particular model (one risk factor or set ofmultiple risk factors) to have a causal effect on the outcome compared to the Null model, which includes no risk factor and no intercept.

Building on the 2-sample MR approach [1] our work is based on summarised data, where genetic variants are used as instrumental variables. In univariable MR, we observe for each genetic variant $i=1, \ldots, n$ the association of variant $i$ with the risk factor $\mathbf{X}$ measured by the beta-coefficient $\beta_{X_{i}}$ from a univariable regression where the genetic variant $i$ is regressed on the risk factor $\mathbf{X}$, and the association of variant $i$ with the outcome $\mathbf{Y}$ measured by the beta-coefficient $\beta_{Y_{i}}$ where the genetic variant $i$ is regressed on the outcome $\mathbf{Y}$, respectively. The causel effect $\theta$ of risk factor $\mathbf{X}$ on $\mathbf{Y}$ can be estimated using the IVW estimate or equivalently the following weighted regression without an intercept

$$
\begin{equation*}
\beta_{Y_{i}}=\theta \beta_{X_{i}}+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}\left(0, \operatorname{se}\left(\beta_{Y_{i}}\right)^{2}\right) . \tag{1}
\end{equation*}
$$

The same causal effect $\theta$ can be derived using a 2 -stage least squares approach [2]. In fact, the beta-coefficients are estimates of the genetic association, but we omit the "hat" notation and treat the beta-coefficient as observations. A further assumption for this approach is that the genetic variants are independent (or uncorrelated) which can be controlled in the selection process of the genetic variants. Extension for correlated variants are for example described in [2].

In order to consider multiple risk factors jointly in one model multivariable MR was introduced in [3]. In the following, we consider $j=1, \ldots, d$ risk factors. Assume $\boldsymbol{\beta}_{\mathbf{X}}=\left\{\boldsymbol{\beta}_{X_{1}}, \ldots, \boldsymbol{\beta}_{X_{d}}\right\}$ to be a matrix of dimension $n \times d$, where $d$ is the number of risk factors and $n$ is the number of genetic variants. Again each individual element $\beta_{X_{i, j}}$ of the predictor matrix is derived from a univariable regression where the genetic variant $i$ is regressed on the risk factor $X_{j}$. Multivariable MR can be cast as a weighted linear multivariable regression model

$$
\begin{equation*}
\beta_{Y_{i}}=\theta_{1} \beta_{X_{i 1}}+\theta_{2} \beta_{X_{i 2}}+\ldots+\theta_{d} \beta_{X_{i d}}+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}\left(0, \operatorname{se}\left(\beta_{Y_{i}}\right)^{2}\right) \tag{2}
\end{equation*}
$$

where the dependent variable is the association with the outcome $\beta_{Y}$ measured on $i=1, \ldots, n$ instrumental variables and the predictors are the $j=1, \ldots, d$ genetic associations with the $d$ risk factors. In matrix notation this can be written as

$$
\begin{equation*}
\boldsymbol{\beta}_{\mathbf{Y}}=\boldsymbol{\beta}_{\mathbf{X}} \boldsymbol{\theta}+\boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}\left(\mathbf{0}, \operatorname{se}\left(\boldsymbol{\beta}_{\mathbf{Y}}\right)^{2}\right) \tag{3}
\end{equation*}
$$

In other words, the risk factors represent the variable space and the genetic variants used as instrumental variables are treated as observations. In practise, we standardise each observation of both, $\beta_{Y_{i}}$ and $\beta_{X_{i}}$ by dividing by $\operatorname{se}\left(\beta_{Y_{i}}\right)$ before the analysis and we assume in the following derivations that $\boldsymbol{\beta}_{\mathbf{Y}}$ and $\boldsymbol{\beta}_{\mathbf{X}}$ are standardised.

We use Bayes factors [4] in order to quantify the evidence for a particular model. By model we refer to the set of risk factors which have a causal effect on the outcome of interest. In order to formalise which risk factors are part of a specific model $M_{\gamma}$ and consequently have a causal effect on the outcome we introduce a binary indicator $\gamma$ of length $d$ that indicates which risk factors are selected and which ones are not

$$
\gamma_{j}=\left\{\begin{array}{l}
1, \text { if the } j \text { th risk factor is selected }  \tag{4}\\
0 \text { otherwise }
\end{array}\right.
$$

The indicator $\gamma$ encodes a specific regression model $M_{\gamma}$ that includes the risk factors as indicated in $\boldsymbol{\gamma}$. Accordingly, we define $\boldsymbol{\beta}_{\mathbf{X}_{\boldsymbol{\gamma}}}$ as the design matrix of the risk factors included and $\boldsymbol{\theta}_{\boldsymbol{\gamma}}$ as the respective causal effects.

The computation of the Bayes factor for model $M_{\gamma}$ against the Null model $M_{0}$, i.e. including no risk factor and no intercept, as presented in the Methods section of the main article requires two ingredients: First the marginal probability of $\boldsymbol{\beta}_{\mathbf{Y}}$ given $\boldsymbol{\beta}_{\mathbf{X}_{\boldsymbol{\gamma}}}$ of model $M_{\boldsymbol{\gamma}}$ and second, the marginal probability of $\boldsymbol{\beta}_{\mathbf{Y}}$ given the Null model $M_{0}$, which we derive as follows:

1. $p_{\boldsymbol{\gamma}}\left(\boldsymbol{\beta}_{\mathbf{Y}} \mid \boldsymbol{\beta}_{\mathbf{X}_{\gamma}}\right)$ : the marginal probability of $\boldsymbol{\beta}_{\mathbf{Y}}$ given $\boldsymbol{\beta}_{\mathbf{X}_{\gamma}}$

In order to model the correlation between risk factors we base our likelihood on a multivariate Gaussian distribution

$$
\begin{equation*}
\boldsymbol{\beta}_{\mathbf{Y}} \mid \boldsymbol{\beta}_{\mathbf{X}_{\gamma}}, \boldsymbol{\theta}_{\boldsymbol{\gamma}}, \tau \sim N\left(\boldsymbol{\beta}_{\mathbf{X}_{\gamma}} \boldsymbol{\theta}_{\boldsymbol{\gamma}}, \frac{1}{\tau}\right) \tag{5}
\end{equation*}
$$

Following Servin and Stephens' $D_{2}$ prior [5] we use the following conjugate prior assumptions for the causal effects $\boldsymbol{\theta}_{\boldsymbol{\gamma}}$, the residual $\epsilon$ and the precision $\tau$

$$
\begin{align*}
\boldsymbol{\theta}_{\gamma} \mid \tau & \sim N(0, \boldsymbol{\nu} / \tau) \\
\epsilon & \sim N\left(0, \frac{1}{\tau}\right) \\
\tau & \sim \Gamma(\kappa / 2, \lambda / 2) \tag{6}
\end{align*}
$$

where $A \mid B$ is defined as $A$ conditional on $B$. Further we can derive analytically the joint posterior distribution for $\boldsymbol{\theta}_{\boldsymbol{\gamma}}$ and $\tau$ as

$$
\begin{aligned}
\tau \mid \boldsymbol{\beta}_{\mathbf{Y}}, \boldsymbol{\beta}_{\mathbf{X}_{\gamma}} & \sim \Gamma\left((n+\kappa) / 2,1 / 2\left(\boldsymbol{\beta}_{Y}^{t} \boldsymbol{\beta}_{Y}-\boldsymbol{\Theta}^{\mathrm{t}} \boldsymbol{\Omega}^{-\mathbf{1}} \boldsymbol{\Theta}+\lambda\right)\right) \\
\boldsymbol{\theta}_{\boldsymbol{\gamma}} \mid \boldsymbol{\beta}_{\mathbf{Y}}, \boldsymbol{\beta}_{\mathbf{X}_{\gamma}}, \tau & \sim N\left(\boldsymbol{\Theta}, \frac{1}{\tau} \boldsymbol{\Omega}\right)
\end{aligned}
$$

where

$$
\begin{gather*}
\underbrace{\boldsymbol{\Theta}}_{d \times 1}=\underbrace{\boldsymbol{\Omega}}_{d \times d} \underbrace{\boldsymbol{\beta}_{\mathbf{X}_{\gamma}}^{t}}_{d \times n} \underbrace{\boldsymbol{\beta}_{\mathbf{Y}}}_{n \times 1}  \tag{7}\\
\boldsymbol{\Omega}=\underbrace{\left(\boldsymbol{\nu}^{-1}+\boldsymbol{\beta}_{\mathbf{X}_{\gamma}}^{\mathbf{t}} \boldsymbol{\beta}_{\mathbf{X}_{\gamma}}\right)^{-1}}_{d \times d} \tag{8}
\end{gather*}
$$

Next we integrate out the causal effects $\boldsymbol{\theta}_{\boldsymbol{\gamma}}$. To begin with, we sort the equation so that the integral contains only terms dependent on $\boldsymbol{\theta}_{\boldsymbol{\gamma}}$

$$
\begin{aligned}
& p_{\boldsymbol{\gamma}}\left(\boldsymbol{\beta}_{\mathbf{Y}} \mid \boldsymbol{\beta}_{\mathbf{X}_{\gamma}}, \tau\right)=\int_{-\infty}^{\infty} \frac{p_{\boldsymbol{\gamma}}\left(\boldsymbol{\beta}_{\mathbf{Y}} \mid \boldsymbol{\beta}_{\mathbf{X}_{\boldsymbol{\gamma}}}, \boldsymbol{\theta}_{\boldsymbol{\gamma}}, \tau\right) p_{\boldsymbol{\gamma}}\left(\boldsymbol{\theta}_{\gamma} \mid \tau\right)}{p_{\boldsymbol{\gamma}}\left(\boldsymbol{\theta}_{\boldsymbol{\gamma}} \mid \boldsymbol{\beta}_{\mathbf{Y}}, \boldsymbol{\beta}_{\mathbf{X}_{\boldsymbol{\gamma}}}, \tau\right)} \delta \boldsymbol{\theta}_{\gamma} \\
& =\int_{-\infty}^{\infty} \frac{(2 \pi)^{-\frac{n}{2}} \tau^{\frac{n}{2}} \exp \left\{-\frac{\tau}{2}\left(\boldsymbol{\beta}_{\mathbf{Y}}-\boldsymbol{\beta}_{\mathbf{X}_{\boldsymbol{\gamma}}} \boldsymbol{\theta}_{\boldsymbol{\gamma}}\right)^{t}\left(\boldsymbol{\beta}_{\mathbf{Y}}-\boldsymbol{\beta}_{\mathbf{X}_{\gamma}} \boldsymbol{\theta}_{\gamma}\right)\right\}}{(2 \pi)^{-\frac{1}{2}} \frac{\|\boldsymbol{\Omega}\|^{-1 / 2}}{\|\tau\|^{-1 / 2}} \exp \left\{-\frac{\tau}{2}\left(\boldsymbol{\theta}_{\gamma}-\boldsymbol{\Theta}\right)^{t} \boldsymbol{\Omega}^{-1}\left(\boldsymbol{\theta}_{\gamma}-\boldsymbol{\Theta}\right)\right\}} \\
& \times(2 \pi)^{-\frac{1}{2}} \frac{\|\boldsymbol{\nu}\|^{-1 / 2}}{\|\tau\|^{-1 / 2}} \exp \left\{-\frac{\tau}{2 \boldsymbol{\nu}} \boldsymbol{\theta}_{\gamma}^{\mathbf{t}} \boldsymbol{\theta}_{\gamma}\right\} \delta \boldsymbol{\theta}_{\gamma} \\
& =(2 \pi)^{-\frac{n}{2}} \tau^{\frac{n}{2}} \frac{\|\boldsymbol{\Omega}\|^{1 / 2}}{\|\nu\|^{1 / 2}} \exp \left\{-\frac{\tau}{2}\left(\boldsymbol{\beta}_{\mathbf{Y}}{ }^{t} \boldsymbol{\beta}_{\mathbf{Y}}-\boldsymbol{\Theta}^{\mathbf{t}} \boldsymbol{\Omega}^{-\mathbf{1}} \boldsymbol{\Theta}\right)\right\} \\
& \times \int_{-\infty}^{\infty} \exp \left\{-\frac{\tau}{2}\left(-2 \boldsymbol{\theta}_{\gamma}^{\mathbf{t}} \boldsymbol{\beta}_{\mathbf{X}_{\gamma}}^{\mathbf{t}} \boldsymbol{\beta}_{\mathbf{Y}}+\boldsymbol{\theta}_{\gamma}^{\mathbf{t}}\left(\boldsymbol{\beta}_{\mathbf{X}_{\gamma}}^{\mathbf{t}} \boldsymbol{\beta}_{\mathbf{X}_{\gamma}}-\boldsymbol{\nu}^{-1}\right) \boldsymbol{\theta}_{\boldsymbol{\gamma}}-\right.\right. \\
& \left.\left.\boldsymbol{\theta}_{\gamma}^{\mathbf{t}} \boldsymbol{\Omega}^{-\mathbf{1}} \boldsymbol{\theta}_{\gamma}+2 \boldsymbol{\theta}_{\gamma}^{\mathbf{t}} \boldsymbol{\Omega}^{-\mathbf{1}} \boldsymbol{\Theta}\right)\right\} \delta \boldsymbol{\theta}_{\boldsymbol{\gamma}}
\end{aligned}
$$

where $\|\mathbf{X}\|$ denotes the determinant of a matrix $\mathbf{X}$ and $\infty$ infinity. Note that the final line in the integral can be simplified to

$$
\begin{equation*}
-2 \boldsymbol{\theta}_{\gamma}^{\mathbf{t}}(\mathbf{A}-\mathbf{D})+\boldsymbol{\theta}_{\gamma}^{\mathbf{t}}(\mathbf{B}-\mathbf{C}) \boldsymbol{\theta}_{\gamma} \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{A} & =\boldsymbol{\beta}_{\mathbf{X}_{\gamma}}^{\mathbf{t}} \boldsymbol{\beta}_{\mathbf{Y}} \\
\mathbf{B} & =\left(\boldsymbol{\beta}_{\mathbf{X}_{\gamma}}^{\mathbf{t}} \boldsymbol{\beta}_{\mathbf{X}_{\gamma}}-\boldsymbol{\nu}^{-1}\right) \\
\mathbf{C} & =\boldsymbol{\Omega}^{-\mathbf{1}} \\
\mathbf{D} & =\boldsymbol{\Omega}^{-\mathbf{1}} \boldsymbol{\Theta} \tag{10}
\end{align*}
$$

By completing the square in $\boldsymbol{\theta}_{\boldsymbol{\gamma}}$ and integrating out $\boldsymbol{\theta}_{\boldsymbol{\gamma}}$ the final integral equals 1.
Overall, this simplifies to

$$
p_{\boldsymbol{\gamma}}\left(\beta_{Y} \mid \boldsymbol{\beta}_{\mathbf{X}_{\gamma}}, \tau\right)=(2 \pi)^{-\frac{n}{2}} \tau^{\frac{n}{2}} \frac{\|\boldsymbol{\Omega}\|^{1 / 2}}{\|\boldsymbol{\nu}\|^{1 / 2}} \exp \left\{-\frac{\tau}{2}\left(\boldsymbol{\beta}_{\mathbf{Y}}^{t} \boldsymbol{\beta}_{\mathbf{Y}}-\boldsymbol{\Theta}^{\mathbf{t}} \boldsymbol{\Omega}^{-\mathbf{1}} \boldsymbol{\Theta}\right)\right\}(11)
$$

Next we integrate out the precision $\tau$

$$
\begin{align*}
p_{\boldsymbol{\gamma}}\left(\boldsymbol{\beta}_{Y} \mid \boldsymbol{\beta}_{\mathbf{X}_{\gamma}}\right)= & \int_{0}^{\infty} p_{\gamma}\left(\boldsymbol{\beta}_{\mathbf{Y}} \mid \boldsymbol{\beta}_{\mathbf{X}_{\boldsymbol{\gamma}}}, \tau\right) p(\tau) \delta \tau  \tag{12}\\
= & (2 \pi)^{-\frac{n}{2}} \frac{\|\boldsymbol{\Omega}\|^{1 / 2}}{\|\boldsymbol{\nu}\|^{1 / 2}} \\
& \times \int_{0}^{\infty} \tau^{\frac{(n+\kappa)}{2}-1} \exp \left\{-\frac{1}{2}\left(\boldsymbol{\beta}_{\mathbf{Y}}{ }^{t} \boldsymbol{\beta}_{\mathbf{Y}}-\boldsymbol{\Theta}^{\mathrm{t}} \boldsymbol{\Omega}^{-\mathbf{1}} \boldsymbol{\Theta}+\lambda\right) \tau\right\} \delta \tau
\end{align*}
$$

The above integral is the normalisation constant of a Gamma distribution with shape $\alpha=\frac{(n+\kappa)}{2}$ and rate $\beta=\frac{1}{2}\left(\boldsymbol{\beta}_{\mathbf{Y}}{ }^{t} \boldsymbol{\beta}_{\mathbf{Y}}-\boldsymbol{\Theta}^{\mathbf{t}} \boldsymbol{\Omega}^{\mathbf{- 1}} \boldsymbol{\Theta}+\lambda\right)$. Thus the above simplifies exactly to

$$
\begin{array}{rc}
p_{\boldsymbol{\gamma}}\left(\boldsymbol{\beta}_{\mathbf{Y}} \mid \boldsymbol{\beta}_{\mathbf{X}_{\boldsymbol{\gamma}}}\right) & =(2 \pi)^{-\frac{n}{2}} \frac{\|\boldsymbol{\Omega}\|^{1 / 2}}{\|\boldsymbol{\nu}\|^{1 / 2}}\left(\frac{\lambda}{2}\right)^{\frac{\kappa}{2}} \frac{\Gamma\left(\frac{n+\kappa}{2}\right)}{\Gamma\left(\frac{\kappa}{2}\right)} \\
\times\left\{\frac{1}{2}\left(\boldsymbol{\beta}_{\mathbf{Y}}{ }^{t} \boldsymbol{\beta}_{\mathbf{Y}}-\boldsymbol{\Theta}^{\mathbf{t}} \boldsymbol{\Omega}^{-\mathbf{1}} \boldsymbol{\Theta}+\lambda\right)\right\}^{\frac{-(n+\kappa)}{2}} \tag{14}
\end{array}
$$

2. $p_{0}\left(\boldsymbol{\beta}_{\mathbf{Y}}\right)$ : the marginal probability of $\boldsymbol{\beta}_{\mathbf{Y}}$ given the Null model $M_{0}$

Next, we derive the marginal probability of the Null model, i.e. where no risk factor and no intercept is included. Under the Null we assume

$$
\begin{equation*}
\beta_{Y} \left\lvert\, \frac{1}{\tau} \sim N\left(0, \frac{1}{\tau}\right)\right. \tag{15}
\end{equation*}
$$

with an expectation fixed at zero, which is a consequence of the missing intercept.
First, we integrate out the precision $\tau$

$$
\begin{align*}
p_{0}\left(\boldsymbol{\beta}_{\mathbf{Y}}\right) & =\int_{0}^{\infty} p_{0}\left(\boldsymbol{\beta}_{\mathbf{Y}} \mid \tau\right) p(\tau) \delta \tau \\
& =(2 \pi)^{-\frac{n}{2}} \int_{0}^{\infty} \tau^{\frac{(n+\kappa)}{2}-1} \exp \left\{-\frac{1}{2}\left(\boldsymbol{\beta}_{\mathbf{Y}}{ }^{t} \boldsymbol{\beta}_{\mathbf{Y}}+\lambda\right) \tau\right\} \delta \tau \tag{16}
\end{align*}
$$

Again the above integral is the normalisation constant of a Gamma distribution with shape $\alpha=\frac{(n+\kappa)}{2}$ and rate $\beta_{0}=\frac{1}{2}\left(\boldsymbol{\beta}_{\mathbf{Y}}{ }^{t} \boldsymbol{\beta}_{\mathbf{Y}}+\lambda\right)$. Thus the above simplifies to

$$
\begin{equation*}
p_{0}\left(\boldsymbol{\beta}_{\mathbf{Y}}\right)=(2 \pi)^{-\frac{n}{2}}\left(\frac{\lambda}{2}\right)^{\frac{\kappa}{2}} \frac{\Gamma\left(\frac{n+\kappa}{2}\right)}{\Gamma\left(\frac{\kappa}{2}\right)}\left(\frac{1}{2}\left(\boldsymbol{\beta}_{\mathbf{Y}} \boldsymbol{\beta}_{\mathbf{Y}}+\lambda\right)\right)^{-\frac{(n+\kappa)}{2}} . \tag{17}
\end{equation*}
$$

The Bayes factor for model $M_{\gamma}$ against $M_{0}$ is defined as the ratio of the marginal probability of $\boldsymbol{\beta}_{\mathbf{Y}}$ given model $M_{\boldsymbol{\gamma}}$ (13) over the marginal probability of $\boldsymbol{\beta}_{\mathbf{Y}}$ given the Null model 17

$$
\begin{align*}
B F\left(M_{\boldsymbol{\gamma}}\right) & =\frac{p_{\boldsymbol{\gamma}}\left(\boldsymbol{\beta}_{\mathbf{Y}} \mid \boldsymbol{\beta}_{\mathbf{X}_{\boldsymbol{\gamma}}}\right)}{p_{0}\left(\boldsymbol{\beta}_{\mathbf{Y}}\right)} \\
& =\frac{\frac{\|\boldsymbol{\Omega}\|^{1 / 2}}{\|\boldsymbol{\nu}\|^{1 / 2}}\left(\frac{1}{2}\left(\boldsymbol{\beta}_{\mathbf{Y}}^{t} \boldsymbol{\beta}_{\mathbf{Y}}-\boldsymbol{\Theta}^{\mathbf{t}} \boldsymbol{\Omega}^{-\mathbf{1}} \boldsymbol{\Theta}+\lambda\right)\right)^{-(n+\kappa) / 2}}{\left(\frac{1}{2}\left(\boldsymbol{\beta}_{\mathbf{Y}}^{t} \boldsymbol{\beta}_{\mathbf{Y}}+\lambda\right)\right)^{-(n+\kappa) / 2}} \\
& =\frac{\|\boldsymbol{\Omega}\|^{1 / 2}}{\|\boldsymbol{\nu}\|^{1 / 2}}\left(\frac{\boldsymbol{\beta}_{\mathbf{Y}}{ }^{t} \boldsymbol{\beta}_{\mathbf{Y}}-\boldsymbol{\Theta}^{\mathbf{t}} \boldsymbol{\Omega}^{-\mathbf{1}} \boldsymbol{\Theta}+\lambda}{\boldsymbol{\beta}_{\mathbf{Y}}^{t} \boldsymbol{\beta}_{\mathbf{Y}}+\lambda}\right)^{-(n+\kappa) / 2} \tag{18}
\end{align*}
$$

Next we consider the limit as $\kappa, \lambda \rightarrow 0 . \kappa$ and $\lambda$ are the shape and scale parameter of the Gamma Distribution, which is the conjugate distribution for
precision. In the limiting case the expectation of the error precision would converge towards a point mass at zero. A precision that converges to zero translates into an error variance that converges to infinity. Thus the limiting case represents a dominant error noise and no variance explained by the model, which is a conservative prior assumption. Moreover, the limit $\lambda \rightarrow 0$ leads to the invariance property of the posterior for $\boldsymbol{\theta}$, ie the posterior of $\boldsymbol{\theta}$ changes appropriately with shifts and scaling (for example inverse-variance weighting) operations on $\boldsymbol{\beta}_{\mathbf{Y}}$.

In limit, the Bayes Factor simplifies to the following closed form expression

$$
\begin{equation*}
B F\left(M_{\boldsymbol{\gamma}}\right)=\frac{\|\boldsymbol{\Omega}\|^{1 / 2}}{\|\boldsymbol{\nu}\|^{1 / 2}}\left(\frac{\boldsymbol{\beta}_{\mathbf{Y}}{ }^{t} \boldsymbol{\beta}_{\mathbf{Y}}-\boldsymbol{\Theta}^{\mathrm{t}} \boldsymbol{\Omega}^{-\mathbf{1}} \boldsymbol{\Theta}}{\boldsymbol{\beta}_{\mathbf{Y}}{ }^{t} \boldsymbol{\beta}_{\mathbf{Y}}}\right)^{-n / 2} . \tag{19}
\end{equation*}
$$

These Bayes factors are then used in the model averaging to quantify the evidence for a model and together with the prior are used to evaluate which model or set of risk factors has the largest support to have a causal effect on the outcome.

## References

[1] Pierce, B. L. \& Burgess, S. Efficient Design for Mendelian Randomization Studies: Subsample and 2-Sample Instrumental Variable Estimators. American Journal of Epidemiology 178, 1177-1184 (2013). URL http://dx.doi.org/10.1093/aje/kwt084.
[2] Burgess, S., Dudbridge, F. \& Thompson, S. G. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Statistics in medicine 35, 18801906 (2016). URL https://www.ncbi.nlm.nih.gov/pubmed/26661904
[3] Burgess, S. \& Thompson, S. G. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. American journal of epidemiology 181, 251-260 (2015). URL https://www.ncbi. nlm.nih.gov/pubmed/25632051.
[4] Kass, R. E. \& Raftery, A. E. Bayes factors. Journal of the American Statistical Association 90, 773-795 (1995). URL https://amstat.tandfonline. com/doi/abs/10.1080/01621459.1995.10476572.
[5] Servin, B. \& Stephens, M. Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet 3, e114 (2007). URL https://www.ncbi.nlm.nih.gov/pubmed/17676998

