20 research outputs found
Gleam: the GLAST Large Area Telescope Simulation Framework
This paper presents the simulation of the GLAST high energy gamma-ray
telescope. The simulation package, written in C++, is based on the Geant4
toolkit, and it is integrated into a general framework used to process events.
A detailed simulation of the electronic signals inside Silicon detectors has
been provided and it is used for the particle tracking, which is handled by a
dedicated software. A unique repository for the geometrical description of the
detector has been realized using the XML language and a C++ library to access
this information has been designed and implemented.Comment: 10 pages, Late
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
Detection of High-Energy Gamma-Ray Emission from the Globular Cluster 47 Tucanae with Fermi
Gamma-Ray Pulsar Bonanza
Most of the pulsars we know about were detected through their radio emission; a few are known to pulse gamma rays but were first detected at other wavelengths (see the Perspective by
Halpern
). Using the Fermi Gamma-Ray Space Telescope,
Abdo
et al.
(p.
840
, published online 2 July; see the cover) report the detection of 16 previously unknown pulsars based on their gamma-ray emission alone. Thirteen of these coincide with previously unidentified gamma-ray sources, solving the 30-year-old mystery of their identities. Pulsars are fast-rotating neutron stars. With time they slow down and cease to radiate; however, if they are in a binary system, they can have their spin rates increased by mass transfer from their companion stars, starting a new life as millisecond pulsars. In another study,
Abdo
et al.
(p.
845
) report the detection of gamma-ray emission from the globular cluster 47 Tucanae, which is coming from an ensemble of millisecond pulsars in the cluster's core. The data imply that there are up to 60 millisecond pulsars in 47 Tucanae, twice as many as predicted by radio observations. In a further companion study,
Abdo
et al.
(p.
848
, published online 2 July) searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars outside of stellar clusters, finding gamma-ray pulsations for eight of them. Their properties resemble those of other gamma-ray pulsars, suggesting that they share the same basic emission mechanism. Indeed, both sets of pulsars favor emission models in which the gamma rays are produced in the outer magnetosphere of the neutron star
A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope
Gamma-Ray Pulsar Bonanza
Most of the pulsars we know about were detected through their radio emission; a few are known to pulse gamma rays but were first detected at other wavelengths (see the Perspective by
Halpern
). Using the Fermi Gamma-Ray Space Telescope,
Abdo
et al.
(p.
840
, published online 2 July; see the cover) report the detection of 16 previously unknown pulsars based on their gamma-ray emission alone. Thirteen of these coincide with previously unidentified gamma-ray sources, solving the 30-year-old mystery of their identities. Pulsars are fast-rotating neutron stars. With time they slow down and cease to radiate; however, if they are in a binary system, they can have their spin rates increased by mass transfer from their companion stars, starting a new life as millisecond pulsars. In another study,
Abdo
et al.
(p.
845
) report the detection of gamma-ray emission from the globular cluster 47 Tucanae, which is coming from an ensemble of millisecond pulsars in the cluster's core. The data imply that there are up to 60 millisecond pulsars in 47 Tucanae, twice as many as predicted by radio observations. In a further companion study,
Abdo
et al.
(p.
848
, published online 2 July) searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars outside of stellar clusters, finding gamma-ray pulsations for eight of them. Their properties resemble those of other gamma-ray pulsars, suggesting that they share the same basic emission mechanism. Indeed, both sets of pulsars favor emission models in which the gamma rays are produced in the outer magnetosphere of the neutron star
Cosmological Synergies Enabled by Joint Analysis of Multi-probe data from WFIRST, Euclid, and LSST
WFIRST, Euclid, and LSST are all missions designed to perform dedicated cosmology surveys that offer unprecedented statistical constraining power and control of systematic uncertainties. There is a growing realization that these missions will be significantly more powerful when the data are processed and analyzed in unison
ERRATUM: "FERMI DETECTION OF γ-RAY EMISSION FROM THE M2 SOFT X-RAY FLARE ON 2010 JUNE 12" (2012, ApJ, 745, 144)
Due to an error at the publisher, the times given for the major tick marks in the X-axis in Figure 1 of the published article are incorrect. The correctly labeled times should be "00:52:00," "00:54:00," ... , and "01:04:00." The correct version of Figure 1 and its caption is shown below. IOP Publishing sincerely regrets this error
Search for gamma-ray emission from DES dwarf spheroidal galaxy candidates with Fermi-LAT data
Due to their proximity, high dark-matter (DM) content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of DM. Recently, eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. We found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with DM halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged DM annihilation cross section for these new targets. If the estimated DM content of these dSph candidates is confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for DM particles with masses 20 GeV annihilating via the bb¯ or τ+τ− channels
Ammando 61, 62 , F. de Palma 45
See paper for full list of authors - 13 pages, 9 figures, accepted for publication in A&AInternational audienceThe addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment's sensitivity to lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV. Such an extension of the instrument's energy range is particularly beneficial for studies of Active Galactic Nuclei with soft spectra, as expected for those at a redshift > 0.5. The high-frequency peaked BL Lac objects PKS 2155-304 (z = 0.116) and PG 1553+113 (0.43 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Multiple observational campaigns of PKS 2155-304 and PG 1553+113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument. A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters. The energy spectra of PKS 2155-304 and PG 1553+113 were reconstructed down to energies of 80 GeV for PKS 2155-304, which transits near zenith, and 110 GeV for the more northern PG 1553+113. The measured spectra, well fitted in both cases by a log-parabola spectral model (with a 5.0 sigma statistical preference for non-zero curvature for PKS 2155-304 and 4.5 sigma for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the observed spectra of both sources at E ~ 100 GeV. When corrected for EBL absorption, the intrinsic H.E.S.S. II mono and Fermi-LAT spectrum of PKS 2155-304 was found to show significant curvature. For PG 1553+113, however, no significant detection of curvature in the intrinsic spectrum could be found within statistical and systematic uncertainties
Astro2020 Science White Paper: Cosmological Synergies Enabled by Joint Analysis of Multi-probe data from WFIRST, Euclid, and LSST
International audienceWFIRST, Euclid, and LSST are all missions designed to perform dedicated cosmology surveys that offer unprecedented statistical constraining power and control of systematic uncertainties. There is a growing realization that these missions will be significantly more powerful when the data are processed and analyzed in unison