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ABSTRACT

Due to their proximity, high dark-matter (DM) content, and apparent absence of non-thermal processes, Milky
Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of DM. Recently,
eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We
searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large
Area Telescope data. We found no significant excesses of gamma-ray emission. Under the assumption that the
DES candidates are dSphs with DM halo properties similar to the known dSphs, we computed individual and
combined limits on the velocity-averaged DM annihilation cross section for these new targets. If the estimated DM
content of these dSph candidates is confirmed, they will constrain the annihilation cross section to lie below the
thermal relic cross section for DM particles with masses 20 GeV annihilating via the bb̄ or τ+τ− channels.

Key words: dark matter – galaxies: dwarf – gamma rays: galaxies – Local Group

1. INTRODUCTION

In the standard model of cosmology, dark matter (DM) is the
dominant component of matter in the universe. Weakly
interacting massive particles (WIMPs) are an attractive
candidate to constitute some or all of DM (e.g., Bertone
et al. 2005; Feng 2010). If WIMPs are in thermal equilibrium in
the early universe and have a velocity-averaged annihilation
cross section of v〈s ñ ∼ 2.2× 10−26 cm3 s−1, their relic
abundance can account for the observed DM abundance
measured today (e.g., Steigman et al. 2012). WIMPs may
continue to annihilate in regions of high DM density to produce
energetic Standard Model particles that can be detected as
indirect signatures of DM. These indirect searches complement
terrestrial searches for DM in accelerator and direct detection
experiments (e.g., Bauer et al. 2015).

Gamma rays are one product of WIMP annihilations (Baltz
et al. 2008; Bringmann & Weniger 2012); they may be
produced directly or in a shower of secondary particles.
Depending on the WIMP mass, these gamma-rays could be
detectable with the Fermi Large Area Telescope (LAT)
(Atwood et al. 2009).

The integrated gamma-ray flux in a specific energy range
(E E Emin max< < ) and region of interest (ROI) on the sky
from DM annihilation is given by
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where the first term encompasses the particle properties of the
DM, while the second term (the so-called “J factor‐ ”)
incorporates information about the distribution of DM along
the line of sight. Specifically, mDM is the DM particle mass,
dN dEg g is the differential gamma-ray yield per annihilation
summed over all final states, DW is the solid angle of the ROI,
and rDM ( )r is the DM density.
Current N-body cosmological simulations of Milky Way-

sized regions predict the existence of thousands of Galactic DM
overdensities called subhalos (Diemand et al. 2008; Springel
et al. 2008). Luminous Milky Way dwarf spheroidal satellite
galaxies (dSphs) are believed to reside in a subset of the most
massive subhalos. The Milky Way dSphs are especially

66 Royal Swedish Academy of Sciences Research Fellow, funded by a grant
from the K. A. Wallenberg Foundation.
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promising targets for indirect DM searches due to their large
DM content, low diffuse Galactic γ-ray foregrounds, and lack
of conventional astrophysical γ-ray production mechanisms
(McConnachie 2012). Several searches for gamma-ray emis-
sion from known dSphs have been performed using LAT data,
none of which has resulted in a positive detection (e.g., Abdo
et al. 2010; Ackermann et al. 2011, 2014, 2015a; Geringer-
Sameth & Koushiappas 2011; Mazziotta et al. 2012; Geringer-
Sameth et al. 2015b).

The census of known Milky Way satellites is certainly
incomplete. Prior to the Sloan Digital Sky Survey (SDSS) (York
et al. 2000), there were ten dSphs known to orbit the Milky Way
(called classical dwarfs). The deep and systematic coverage of
the northern celestial hemisphere by SDSS has more than
doubled the number of known Milky Way satellites (McCon-
nachie 2012). Additionally, SDSS data led to the discovery of a
new population of “ultra-faint” satellite galaxies, which were
found to be the most DM dominated objects known (Simon &
Geha 2007; Strigari et al. 2008b; Geha et al. 2009). The Dark
Energy Survey (DES; Abbott et al. 2005) is a southern-
hemisphere optical survey expected to find new dSphs (Tollerud
et al. 2008; Hargis et al. 2014), which would increase the
sensitivity of searches for particle DM (He et al. 2015).

Photometric survey data can be used to identify stellar
overdensities associated with satellite dwarf galaxies or
globular clusters. Satellite galaxies require DM to explain their
observed kinematics, while the mass of globular clusters can be
accounted for by their visible matter alone. Globular clusters
can be distinguished from dwarf galaxies based on spectro-
scopic measurements (Willman & Strader 2012). The range of
stellar metallicities in globular clusters is narrower than that
observed in dSph galaxies. Though globular clusters and
satellite galaxies may possess similar stellar velocity disper-
sions, the larger spatial extent of dwarf galaxies implies that
they are DM-dominated.

The first internal annual release of DES data (Y1A1) covers
1800 deg2~ in the southern hemisphere ( 1600 deg2~ not

overlapping with SDSS).68 Recent studies of the Y1A1 data set
have revealed eight new dSph candidates (Bechtol et al. 2015;
Koposov et al. 2015).69 Since the LAT continuously surveys
the entire sky, LAT data collected over the duration of the
mission can be used to search for gamma-ray emission from the
DES dSph candidates.

2. DISCOVERY OF NEW dSph CANDIDATES WITH DES

Current and near-future deep wide-field optical imaging
surveys have the potential to discover many new ultra-faint
Milky Way satellites (Tollerud et al. 2008; He et al. 2015;
Hargis et al. 2014). The ensemble of PanSTARRS (Kaiser
et al. 2002), the SkyMapper Southern Sky Survey (Keller
et al. 2007), DES (Abbott et al. 2005), and the Large Synoptic
Survey Telescope (Ivezic et al. 2008) will explore large areas of
the sky to unprecedented depths. Here, we focus on a set of
dSph candidates recently found in first-year DES data.

Details regarding the first-year DES data set and techniques
to search for ultra-faint dSphs are provided in Bechtol et al.
(2015) and Koposov et al. (2015). Briefly, a dSph candidate is
identified as a statistically significant arcminute-scale

overdensity of resolved stars consistent with an old
( 10 Gyr> ) and metal-poor (Z 0.0002~ ) stellar population. A
variety of search techniques have been applied to the first-year
DES data, including visual inspection of DES images, thresh-
olding stellar density maps, scanning with optimized spatial
filters, and automated matched-filter maximum-likelihood
algorithms. The physical characteristics of dSph candidates
(e.g., centroid position, distance, and spatial extension) can be
inferred by fitting the spatial and color–magnitude distributions
of the stars. Table 1 provides a summary of the eight
dSph candidates reported by Bechtol et al. (2015).

3. LAT ANALYSIS

To search for gamma-ray emission from these new
dSph candidates, we used six years of LAT data (2008 August
4 to 2014 August 5) passing the P8R2_SOURCE event class
selections from 500 MeV to 500 GeV. The low-energy bound
of 500MeV is selected to mitigate the impact of leakage from
the bright limb of the Earth because the point-spread function
(PSF) broadens considerably below that energy. The high-
energy bound of 500 GeV is chosen to mitigate the effect of the
increasing residual charged-particle background at higher
energies (Ackermann et al. 2015b). Compared to the previous
iteration of the LAT event-level analysis, Pass 8 provides
significant improvements in all areas of LAT analysis;
specifically the differential point-source sensitivity improves
by ∼30%–50% in P8R2_SOURCE_V6 relative to
P7REP_SOURCE_V15 (Atwood et al. 2013). To remove
gamma-rays produced by cosmic-ray interactions in the Earthʼs
limb, we rejected events with zenith angles greater than 100.
Additionally, events from time intervals around bright gamma-
ray bursts and solar flares were removed using the same
method as in the 4-year catalog analysis (3FGL; Acero
et al. 2015). To analyze the dSph candidates in Table 1, we
used 10 10 ´  ROIs centered on each object. Data reduction
was performed using ScienceTools version 10-01-00.70 Figure 1
shows smoothed counts maps around each candidate for
energies 1 GeV> . The candidate dSphs reside in regions of the
sky where the diffuse background is relatively smooth. With
the exception of DES J0255.4−5406, all the objects are located

Table 1
DES dSph Candidates and Estimated J-factors

Name (ℓ, b)a Distanceb Jlog Est.10 ( )c

deg( ) kpc( ) log GeV cm10
2 5( )-

DES J0222.7−5217 275.0, 59.6( )- 95 18.3
DES J0255.4−5406 271.4, 54.7( )- 87 18.4
DES J0335.6−5403 266.3, 49.7( )- 32 19.3
DES J0344.3−4331 249.8, 51.6( )- 330 17.3
DES J0443.8−5017 257.3, 40.6( )- 126 18.1
DES J2108.8−5109 347.2, 42.1( )- 69 18.6
DES J2251.2−5836 328.0, 52.4( )- 58 18.8
DES J2339.9−5424 323.7, 59.7( )- 95 18.3

Notes.
a Galactic longitude and latitude.
b We note that typical uncertainties on the distances of dSphs are 10%–15%.
c J-factors are calculated over a solid angle of 2.4 10 sr4DW ~ ´ - (angular
radius 0. 5 ). See text for more details.

68 http://data.darkenergysurvey.org/aux/releasenotes/DESDMrelease.html
69 Koposov et al. (2015) find a ninth candidate inside the DES year-one
imaging footprint but outside the Y1A1 coadd catalog. 70 http://fermi.gsfc.nasa.gov/ssc/data/analysis/software/
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more than 1° from 3FGL background sources (DES J0255.4
−5406 is located 0. 63 from 3FGL J0253.1−5438).

We applied the search procedure presented in Ackermann
et al. (2015a) to the new DES dSph candidates. Specifically,
we performed a binned maximum-likelihood analysis in 24

logarithmically spaced energy bins and 0. 1 spatial pixels.
Data are additionally partitioned in one of four PSF
event types, which are combined in a joint-likelihood
function when performing the fit to each ROI (Ackermann
et al. 2015a).

Figure 1. LAT counts maps in10 10 ´  ROI centered at each DES dSph candidate (white “×” symbols), for E 1 GeV> , smoothed with a 0. 25 Gaussian kernel. All
3FGL sources in the ROI are indicated with white “+” symbols, and those with TS 100> are explicitly labeled.
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We used a diffuse emission model based on the model for
Galactic diffuse emission derived from an all-sky fit to the
Pass 7 Reprocessed data,71 but with a small ( 10%< )
energy-dependent correction to account for differences in the
Pass 8 instrument response.72 Additionally, we model
extragalactic gamma-ray emission and residual charged particle
contamination with an isotropic model fit to the Pass 8 data.
These models will be included in the forthcoming public Pass
8 data release. Point-like sources from the recent 3FGL catalog
(Acero et al. 2015) within 15 of the ROI center were also
included in the ROI model. The spectral parameters of these
sources were fixed at their 3FGL catalog values. The flux
normalizations of the Galactic diffuse and isotropic compo-
nents and 3FGL catalog sources within the 10 10 ´  ROI
were fit simultaneously in a binned likelihood analysis over the
broadband energy range from 500MeV to 500 GeV. The fluxes
and normalizations of the background sources are insensitive to
the inclusion of a putative power-law source at the locations of
the DES dSph candidates, as expected when there is no bright
point source at the center of the ROI.

In contrast to Ackermann et al. (2015a), we modeled the
dSph candidates as point-like sources rather than spatially
extended Navarro, Frenk and White (NFW) DM density
profiles (Navarro et al. 1997). This choice was motivated by the
current uncertainty in the spatial extension of the DM halos of
these new objects. Previous studies have shown that the LAT
flux limits are fairly insensitive to modeling dSph targets as
point-like versus spatially extended sources (Ackermann
et al. 2014). Following the procedure of Ackermann et al.
(2015a), we fit for excess gamma-ray emission associated with
each target in each energy bin separately to derive flux
constraints that are independent of the choice of spectral model.
Within each bin, we model the putative dSph source with a
power-law spectral model (dN/dE Eµ -G) with spectral index

of 2G = . We show the bin-by-bin integrated energy-flux 95%
confidence level upper limits for each dSph candidate in
Figure 2. The Poisson likelihoods from each bin were
combined to form global spectral likelihoods for different
DM annihilation channels and masses.
We tested for excess gamma-ray emission consistent with

two representative DM annihilation channels (i.e., bb̄ and
τ+τ−) and a range of particle masses from 2 GeV to 10 TeV
(when kinematically allowed). No significant excess gamma-
ray emission was observed from any of the DES
dSph candidates for any of the DM masses or channels tested.
The data were found to be well described by the background
model with no significant residuals observed.
We calculated the test statistic (TS) for signal detection by

comparing the likelihood values both with and without the
added dSph candidate template (see Equation (6) in Ackermann
et al. 2015a).
The most significant excess, TS 6.8= , was for DES J0335.6

−5403 and a DM particle with m 25 GeVDM = annihilating
into τ+τ−.73 To convert from TS to a local p-value, we use the
TS distribution measured by performing our search for gamma-
ray emission in 4000 random blank sky fields (Ackermann
et al. 2014, 2015a).74 We find that TS 6.8= corresponds to a
local significance of 2.4s (p 0.01= ). After applying a trials
factor to account for our scan in mass and annihilation channel,
we calculate a significance of 1.65s (p 0.05= ) for this target.
The global significance when accounting for fitting eight target
locations is 0.43s (p 0.33= ).
Following the procedure described in the supplemental

material of Ackermann et al. (2015a), we investigated the
systematic uncertainties related to uncertainties in the diffuse
emission model by refitting with eight alternative diffuse

Figure 2. Bin-by-bin integrated energy-flux upper limits at 95% confidence level for the eight DES dSph candidates modeled as point-like sources.

71 http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
72 Standard LAT analyses treat the diffuse emission model as being defined in
terms of true energy, but the model was necessarily derived from the measured
energies of events. This implies a weak dependence of the model on the
instrument response functions. The correction applied to the diffuse emission
model accounts for the different energy dependence of the effective area and
energy resolution between Pass 7 Reprocessed and Pass 8.

73 We note that the radio-continuum source PMN J0335−5406 is located
0. 1~  from the center of DES J0335.6−5403. It is not a cataloged blazar, but

has radio and infrared spectral characteristics consistent with blazars detected
by the LAT.
74 Though our blank sky ROIs are not independent, the overlap is negligible
since we are testing for a point source at the center of the ROI. We have
verified with a Monte Carlo all-sky realization that the TS distribution from our
blank-sky analysis follows the asymptotic expectation when the background
model perfectly describes the data.
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models (de Palma et al. 2013). We found that using the
alternative diffuse models varied the calculated limits and TS
values by 20% .

4. ESTIMATING J-FACTORS FOR THE
DES dSph CANDIDATES

The DM content of the DES dSph candidates cannot be
determined without spectroscopic observations of their member
stars. However, it is possible to predict the upper limits on the
DM annihilation cross section that would be obtained given
such observations by making the assumption that these
candidates possess DM distributions similar to the known
dSphs. Our estimates for the astrophysical J-factors of these
candidates are motivated by two established relationships.
First, the known dSphs have a common mass scale in their
interiors, roughly 107 M within their central 300 pc (Strigari
et al. 2008a). This radius is representative of the half light
radius for classical dSphs, but is outside the visible stellar
distribution of several ultra-faint satellites. More generally, the
half-light radius of a dSph and the mass within the half-light
radius have been found to obey a simple scaling relation,
assuming that the velocity dispersions are nearly constant in
radius and the anisotropy of the stars is not strongly radially
dependent (Walker et al. 2009; Wolf et al. 2010).

In the analysis that follows, we used the ten ultra-faint SDSS
satellites with spectroscopically determined J-factors as a
representative set of known dSphs. Specifically, we take the
J-factors calculated assuming an NFW profile integrated over a
radius of 0. 5 for Boötes I, Canes Venatici I, Canes Venatici II,
Coma Berenices, Hercules, Leo IV, Segue 1, Ursa Major I,
Ursa Major II, and Willman 1 (see Table 1 in Ackermann
et al. 2014). Figure 3 shows the relation between the
heliocentric distances and J-factors of ultra-faint and classical
dSphs. As expected from their similar interior DM masses, the
J-factors of the known dSphs scale approximately as the
inverse square of the distance. The best-fit normalization is

Jlog 18.3 0.110( ) =  at d 100 kpc= . We obtain a similar
best-fit value, Jlog 18.1 0.110( ) =  at d 100 kpc= , using the
J-factors derived by Geringer-Sameth et al. (2015a), who
assumed a generalized NFW profile and omitted Willman
1.75 We note that the limited scatter in Figure 3 is primarily due
to the known dSphs residing in similar DM halos (Ackermann
et al. 2014). Under the assumption that the new DES
dSph candidates belong to the same population, we estimated
their J-factors based on the distances derived from the DES
photometry. Table 1 gives the estimated J-factors integrated
over a solid-angle of 2.4 10 sr4DW ~ ´ - using our simple,
empirical relation.
Several caveats should be noted. None of the DES

candidates have been confirmed to be gravitationally bound.
It is possible that some have stellar populations characteristic of
galaxies but lack substantial DM content, as is the case for
Segue 2 (Kirby et al. 2013), or have complicated kinematics
that are difficult to interpret (Willman et al. 2011). Further,
some of the M31 dSphs have been found to deviate from these
relations, though it is possible that these deviations are due to
tidal disruption (Collins et al. 2014). Kinematic measurements
of the member stars are needed to unambiguously resolve these
questions.
Using the J-factor estimates presented in Table 1, we

followed the likelihood procedure detailed in Ackermann et al.
(2015a) to obtain limits on DM annihilation from these eight
candidates shown in Figure 4.
We assumed a symmetric logarithmic uncertainty on the

J-factor of 0.4 dex for each DES candidate. This value is
representative of the uncertainties from ultra-faint dSphs
(Ackermann et al. 2011; Geringer-Sameth et al. 2015a) and
is somewhat larger than the uncertainties derived in Martinez
(2015). The 0.4 dex uncertainty is intended to represent the
expected measurement uncertainty on the J-factors of the DES
candidates after kinematic follow up. The corresponding
uncertainty band is illustrated in Figure 3. We apply the same
methodology as Ackermann et al. (2015a) to account for the
J-factor uncertainty on each DES candidate by modeling it as a
log normal distribution with J iobs, equal to the values in Table 1,
and 0.4is = dex (see Equation (3) of Ackermann et al. 2015a).
We derived individual and combined limits on the DM

annihilation cross section for DM annihilation via the bb̄ and
τ+τ−channels, under the assumption that each DES candidate is
a dSph and has the J-factor listed in Table 1. We note that when
using a J-factor uncertainty of 0.6 dex instead of 0.4 dex , the
individual dwarf candidate limits worsen by a factor of ∼1.6,
while the combined limits worsen by 15%–20%. We stress that
the distance-estimated limits may differ substantially as spectro-
scopic data become available to more robustly constrain the DM
content of the DES candidates. However, once measured J-
factors are obtained, the observed limits from each candidate will
scale linearly with the measured J-factor relative to our
estimates. Given the current uncertainty regarding the nature
of the dSph candidates, we do not combine limits with those
from previously known dSphs (i.e., Ackermann et al. 2015a).

5. DISCUSSION AND CONCLUSIONS

The discovery of eight dSph candidates in the first year of
DES observations sets an optimistic tone for future
dSph detections from DES and other optical surveys.
DES J0335.6−5403, at a distance of ∼32 kpc, is a particularly
interesting candidate in this context, and should be considered a

Figure 3. J-factor distance scaling. Black points are from Table 1 in
Ackermann et al. (2014). The red curve is our best fit with an assumed inverse
square distance relation (see the text). The red band shows the 0.4 dex
uncertainty that we adopt.

75 When using the values derived by Geringer-Sameth et al. (2015a) and
including Segue 2, we find a best-fit normalization of Jlog 18.0 0.110( ) =  at
d 100 kpc= .
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high-priority target for spectroscopic follow up. The location of
any newly discovered dSph, including the candidates investi-
gated in this work, will have already been regularly observed
since the beginning of the Fermi mission. No significant
gamma-ray excess was found coincident with any of the eight
new DES dSph candidates considered here. If kinematic
analyses find the dSph candidates to have J-factors similar to
our estimates, they constrain the annihilation cross section to lie
below the thermal relic cross section for DM particles with
masses 20 GeV annihilating via the bb̄ or τ+τ−channels.

The population of nearby DM-dominated dSphs represents
an independent set of targets to test possible signals of DM
annihilation in other regions such as the Galactic center (e.g.,
Gordon & Macias 2013; Abazajian et al 2014; Calore et al.
2015; Daylan et al. 2014). Though the expected DM signals of
individual dSphs are smaller than that of the Galactic center, a
joint-likelihood analysis of many dSphs can probe the DM
annihilation cross section at a similar level of sensitivity. The
incorporation of new dSphs in indirect searches for DM with
the LAT will further enhance the sensitivity of this method.

Independent analyses of DES J0335.6−5403 have been
performed by Geringer-Sameth et al. (2015c) and Hooper &
Linden (2015). While the analysis details differ (e.g., the data
set, the search technique, statistical methodology, and the
calculation of the trials factor), each analysis finds the largest
TS value in the direction of DES J0335.6−5403. The p-values
derived in Geringer-Sameth et al. and Hooper & Linden are
smaller than those found in this work. One key difference is
that Geringer-Sameth et al. and Hooper & Linden use the
publicly available Pass 7 Reprocessed data, while the
analysis presented here uses the soon-to-be-released Pass 8
data, which improves the point-source sensitivity by ∼30%–

50% in the relevant energy range.
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