26 research outputs found

    Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency

    Get PDF
    Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease cases. A mutation in 1 of over 40 monogenic genes can be detected in approximately 30% of individuals with SRNS whose symptoms manifest before 25 years of age. However, in many patients, the genetic etiology remains unknown. Here, we have performed whole exome sequencing to identify recessive causes of SRNS. In 7 families with SRNS and facultative ichthyosis, adrenal insufficiency, immunodeficiency, and neurological defects, we identified 9 different recessive mutations in SGPL1, which encodes sphingosine-1-phosphate (S1P) lyase. All mutations resulted in reduced or absent SGPL1 protein and/or enzyme activity. Overexpression of cDNA representing SGPL1 mutations resulted in subcellular mislocalization of SGPL1. Furthermore, expression of WT human SGPL1 rescued growth of SGPL1-deficient dpl1. yeast strains, whereas expression of disease-associated variants did not. Immunofluorescence revealed SGPL1 expression in mouse podocytes and mesangial cells. Knockdown of Sgpl1 in rat mesangial cells inhibited cell migration, which was partially rescued by VPC23109, an S1P receptor antagonist. In Drosophila, Sply mutants, which lack SGPL1, displayed a phenotype reminiscent of nephrotic syndrome in nephrocytes. WT Sply, but not the disease-associated variants, rescued this phenotype. Together, these results indicate that SGPL1 mutations cause a syndromic form of SRNS

    Diverse molecular causes of unsolved autosomal dominant tubulointerstitial kidney diseases

    Get PDF
    Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD) is caused by mutations in one of at least five genes and leads to kidney failure usually in mid adulthood. Throughout the literature, variable numbers of families have been reported, where no mutation can be found and therefore termed ADTKD-not otherwise specified. Here, we aim to clarify the genetic cause of their diseases in our ADTKD registry. Sequencing for all known ADTKD genes was performed, followed by SNaPshot minisequencing for the dupC (an additional cytosine within a stretch of seven cytosines) mutation of MUC1. A virtual panel containing 560 genes reported in the context of kidney disease (nephrome) and exome sequencing were then analyzed sequentially. Variants were validated and tested for segregation. In 29 of the 45 registry families, mutations in known ADTKD genes were found, mostly in MUC1. Sixteen families could then be termed ADTKD-not otherwise specified, of which nine showed diagnostic variants in the nephrome (four in COL4A5, two in INF2 and one each in COL4A4, PAX2, SALL1 and PKD2). In the other seven families, exome sequencing analysis yielded potential disease associated variants in novel candidate genes for ADTKD; evaluated by database analyses and genome-wide association studies. For the great majority of our ADTKD registry we were able to reach a molecular genetic diagnosis. However, a small number of families are indeed affected by diseases classically described as a glomerular entity. Thus, incomplete clinical phenotyping and atypical clinical presentation may have led to the classification of ADTKD. The identified novel candidate genes by exome sequencing will require further functional validation

    Mutations in KEOPS-Complex Genes Cause Nephrotic Syndrome with Primary Microcephaly

    Get PDF
    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms

    Whole exome sequencing identified ATP6V1C2 as a novel candidate gene for recessive distal renal tubular acidosis

    Full text link
    Distal renal tubular acidosis is a rare renal tubular disorder characterized by hyperchloremic metabolic acidosis and impaired urinary acidification. Mutations in three genes (ATP6V0A4, ATP6V1B1 and SLC4A1) constitute a monogenic causation in 58-70% of familial cases of distal renal tubular acidosis. Recently, mutations in FOXI1 have been identified as an additional cause. Therefore, we hypothesized that further monogenic causes of distal renal tubular acidosis remain to be discovered. Panel sequencing and/or whole exome sequencing was performed in a cohort of 17 families with 19 affected individuals with pediatric onset distal renal tubular acidosis. A causative mutation was detected in one of the three "classical" known distal renal tubular acidosis genes in 10 of 17 families. The seven unsolved families were then subjected to candidate whole exome sequencing analysis. Potential disease causing mutations in three genes were detected: ATP6V1C2, which encodes another kidney specific subunit of the V-type proton ATPase (1 family); WDR72 (2 families), previously implicated in V-ATPase trafficking in cells; and SLC4A2 (1 family), a paralog of the known distal renal tubular acidosis gene SLC4A1. Two of these mutations were assessed for deleteriousness through functional studies. Yeast growth assays for ATP6V1C2 revealed loss-of-function for the patient mutation, strongly supporting ATP6V1C2 as a novel distal renal tubular acidosis gene. Thus, we provided a molecular diagnosis in a known distal renal tubular acidosis gene in 10 of 17 families (59%) with this disease, identified mutations in ATP6V1C2 as a novel human candidate gene, and provided further evidence for phenotypic expansion in WDR72 mutations from amelogenesis imperfecta to distal renal tubular acidosis

    Discordant Clinical Course of Vitamin-D-Hydroxylase (CYP24A1) Associated Hypercalcemia in Two Adult Brothers With Nephrocalcinosis

    No full text
    Background/Aims: Hypercalcemia can result in nephrocalcinosis/nephrolithiasis and may lead to renal failure. Idiopathic infantile hypercalcemia is caused by mutations of the CYP24A1 gene, which regulates vitamin D activity. Classically infants present with hypercalcemia. Recently, a number of individuals have been reported with late onset clinical manifestation or late diagnosis in adulthood. All these patients are believed to show hypercalciuria. Methods: We report a 24 year old patient of healthy consanguine parents. Genetic analysis was performed by Sanger sequencing of the CYP24A1 gene in the index patient and targeted exon 2 analysis of all other family members. Results: The patient was hospitalized with severe malaise during an acute EBV-infection. He showed hypercalcemia > 3mmol/l and acute, hypovolemic renal failure with profound nephrocalcinosis, but no hypercalciuria. Genetic workup revealed a homozygous loss-of-function mutation p.E143del in the CYP24A1 gene. His clinically asymptomatic brother showed nephrocalcinosis of lesser degree. Repeatedly, low parathyroid hormone levels were detected in both brothers. Conclusion: This family displays the highly variable phenotype of CYP24A1 biallelic mutation carriers. CYP24A1 associated disease is an important differential diagnosis for the workup and counseling of infants as well as adults with hypercalcemia since a proper genetic diagnosis may result in therapeutic consequences

    Gene panel sequencing identifies a likely monogenic cause in 7% of 235 Pakistani families with nephrolithiasis

    Full text link
    Nephrolithiasis (NL) affects 1 in 11 individuals worldwide and causes significant patient morbidity. We previously demonstrated a genetic cause of NL can be identified in 11-29% of pre-dominantly American and European stone formers. Pakistan, which resides within the Afro-Asian stone belt, has a high prevalence of nephrolithiasis (12%) as well as high rate of consanguinity (> 50%). We recruited 235 Pakistani subjects hospitalized for nephrolithiasis from five tertiary hospitals in the Punjab province of Pakistan. Subjects were surveyed for age of onset, NL recurrence, and family history. We conducted high-throughput exon sequencing of 30 NL disease genes and variant analysis to identify monogenic causative mutations in each subject. We detected likely causative mutations in 4 of 30 disease genes, yielding a likely molecular diagnosis in 7% (17 of 235) of NL families. Only 1 of 17 causative mutations was identified in an autosomal recessive disease gene. 10 of the 12 detected mutations were novel mutations (83%). SLC34A1 was most frequently mutated (12 of 17 solved families). We observed a higher frequency of causative mutations in subjects with a positive NL family history (13/109, 12%) versus those with a negative family history (4/120, 3%). Five missense SLC34A1 variants identified through genetic analysis demonstrated defective phosphate transport. We examined the monogenic causes of NL in a novel geographic cohort and most frequently identified dominant mutations in the sodium-phosphate transporter SLC34A1 with functional validation

    Likelihoods for at least one mutation on each allele and at least one frameshift mutation on each allele are clearly improved in acute multi-sgRNA CRISPR/Cas9 KO of <i>osgep</i> and <i>tprkb</i>.

    No full text
    <p><b>(a-b)</b> The likelihood is shown of generating at least one mutation on each allele <i>P(M)</i> (<b>a</b>) and of generating at least one frameshift mutation on each allele <i>P(F)</i> (<b>b</b>), where <i>M</i> = at least one mutation on each allele, <i>F</i> = at least one frameshift mutation on each allele, <i>q</i> = probability of no mutation, <i>r</i> = specific sgRNA, <i>im</i> = fraction of in-frame mutations of all mutations, <i>nm</i> = fraction of non-coding mutations of all mutations. (<b>c-h</b>) The likelihoods of at least 1 mutation on each allele and at least 1 frameshift mutation on each allele were calculated based on observed mutagenesis and frameshift rates for 96 individual fish per gene according to the equation in (<b>a</b>) and (<b>b</b>). (<b>c</b>) The individual analysis for <i>osgep</i> revealed a median <i>P(M)</i> of 48.1% for sgRNA1, 86.6% for sgRNA2, and 63.4% for sgRNA3. (<b>d</b>) The median <i>P(F)</i> was 15.1% for sgRNA1, 14.6% for sgRNA2, and 18.5% for sgRNA3. (<b>e</b>) For the pooled <i>osgep</i> sgRNAs, the median <i>P(M)</i> was 99.3%, and 64.2% for <i>P(F)</i>. (<b>f</b>) The individual analysis for <i>tprkb</i> revealed a median <i>P(M)</i> of 100% for sgRNA1, 84.7% for sgRNA2, and 16.9% for sgRNA5. (<b>g</b>) The median <i>P(F)</i> was 15.5% for sgRNA1, 52.2% for sgRNA2, and 4.1% for sgRNA5. (<b>h</b>) For the pooled <i>tprkb</i> sgRNAs, the median <i>P(M)</i> was 100%, and 78.8% for <i>P(F)</i>.</p
    corecore