10 research outputs found

    Frameshift Mutagenesis and Microsatellite Instability Induced by Human Alkyladenine DNA Glycosylase

    Get PDF
    Human alkyladenine DNA glycosylase (hAAG) excises alkylated purines, hypoxanthine, and etheno bases from DNA to form abasic (AP) sites. Surprisingly, elevated expression of hAAG increases spontaneous frameshift mutagenesis. By random mutagenesis of eight active site residues, we isolated hAAG-Y127I/H136L double mutant that induces even higher rates of frameshift mutation than does the wild-type hAAG; the Y127I mutation accounts for the majority of the hAAG-Y127I/H136L-induced mutator phenotype. The hAAG-Y127I/H136L and hAAG-Y127I mutants increased the rate of spontaneous frameshifts by up to 120-fold in S. cerevisiae and also induced high rates of microsatellite instability (MSI) in human cells. hAAG and its mutants bind DNA containing one and two base-pair loops with significant affinity, thus shielding them from mismatch repair; the strength of such binding correlates with their ability to induce the mutator phenotype. This study provides important insights into the mechanism of hAAG-induced genomic instability.National Institutes of Health (U.S.) (Grant CA055042)National Institutes of Health (U.S.) (Grant CA115802)National Institutes of Health (U.S.) (Grant ES02109

    Repair of endogenous DNA base lesions modulate lifespan in mice

    Get PDF
    The accumulation of DNA damage is thought to contribute to the physiological decay associated with the aging process. Here, we report the results of a large-scale study examining longevity in various mouse models defective in the repair of DNA alkylation damage, or defective in the DNA damage response. We find that the repair of spontaneous DNA damage by alkyladenine DNA glycosylase (Aag/Mpg)-initiated base excision repair and O[superscript 6]-methylguanine DNA methyltransferase (Mgmt)-mediated direct reversal contributes to maximum life span in the laboratory mouse. We also uncovered important genetic interactions between Aag, which excises a wide variety of damaged DNA bases, and the DNA damage sensor and signaling protein, Atm. We show that Atm plays a role in mediating survival in the face of both spontaneous and induced DNA damage, and that Aag deficiency not only promotes overall survival, but also alters the tumor spectrum in Atm[superscript −/−] mice. Further, the reversal of spontaneous alkylation damage by Mgmt interacts with the DNA mismatch repair pathway to modulate survival and tumor spectrum. Since these aging studies were performed without treatment with DNA damaging agents, our results indicate that the DNA damage that is generated endogenously accumulates with age, and that DNA alkylation repair proteins play a role in influencing longevity.National Institutes of Health (U.S.) (Grant R01-CA075576)National Institutes of Health (U.S.) (Grant R01-ES022872)National Institutes of Health (U.S.) (Grant R01-CA149261)National Institutes of Health (U.S.) (Grant P30-ES002109

    Transcription-Dependent Increase in Multiple Classes of Base Substitution Mutations in Escherichia coli

    No full text
    We showed previously that transcription in Escherichia coli promotes C · G-to-T · A transitions due to increased deamination of cytosines to uracils in the nontranscribed but not the transcribed strand (A. Beletskii and A. S. Bhagwat, Proc. Natl. Acad. Sci. USA 93:13919-13924, 1996). To study mutations other than that of C to T, we developed a new genetic assay that selects only base substitution mutations and additionally excludes C · G to T · A transitions. This novel genetic reversion system is based on mutations in a termination codon and involves positive selection for resistance to bleomycin or kanamycin. Using this genetic system, we show here that transcription from a strong promoter increases the level of non-C-to-T as well as C-to-T mutations. We find that high-level transcription increases the level of non-C-to-T mutations in DNA repair-proficient cells in three different sequence contexts in two genes and that the rate of mutation is higher by a factor of 2 to 4 under these conditions. These increases are not caused by a growth advantage for the revertants and are restricted to genes that are induced for transcription. In particular, high levels of transcription do not create a general mutator phenotype in E. coli. Sequence analysis of the revertants revealed that the frequency of several different base substitutions increased upon transcription of the bleomycin resistance gene and that G · C-to-T · A transversions dominated the spectrum in cells transcribing the gene. These results suggest that high levels of transcription promote many different spontaneous base substitutions in E. coli

    Transcriptional networks in S. cerevisiae linked to an accumulation of base excision repair intermediates.

    Get PDF
    Upon exposure to DNA damaging agents, Saccharomyces cerevisiae respond by activating a massive transcriptional program that reflects the fact that "DNA damaging" agents also damage other cellular macromolecules. To identify the transcriptional response that is specific to DNA damage, we have modulated the first two enzymes in the base excision repair (BER) pathway generating yeast strains with varied levels of the repair intermediates, abasic sites or strand breaks. We show that the number of abasic sites is significantly increased when the 3-methyladenine DNA glycosylase (Mag): AP endonuclease (Apn1) ratio is increased and that spontaneous frame shift mutation is considerably elevated when either Mag, or Mag plus Apn1, expression is elevated. Expression profiling identified 633 ORFs with differential expression associated with BER modulation. Analysis of transcriptional networks associated with the accumulation of DNA repair intermediates identifies an enrichment for numerous biological processes. Moreover, most of the BER-activated transcriptional response was independent of the classical yeast environmental stress response (ESR). This study highlights that DNA damage in the form of abasic sites or strand breaks resulting from BER modulation is a trigger for substantial genome-wide change and that this response is largely ESR-independent. Taken together, these results suggest that a branch point exists in the current model for DNA damage-signaled transcription in S. cerevisiae
    corecore