18 research outputs found

    Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis

    Get PDF
    Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials

    Antibacterial and antibiofilm effects of sodium hypochlorite against Staphylococcus aureus isolates derived from patients with atopic dermatitis

    No full text
    Background: Atopic dermatitis (AD) is characterized by an increased susceptibility to skin infections. Staphylococcus aureus is reported to dominate in AD lesions and reports have revealed the presence of staphylococcal biofilms. These infections contribute to aggravation of the eczema. Sodium hypochlorite is known to reduce bacterial load of skin lesions, as well as disease severity, in patients with AD, but the effect on biofilms is unknown. Objectives: To investigate the antimicrobial and antibiofilm effects of sodium hypochlorite against S. aureus isolates derived from patients with AD. Methods: Skin biopsies derived from patients with infected AD were examined by scanning electron microscopy (SEM). Using radial diffusion assays, biofilm assays and confocal laser scanning microscopy, we assessed the effect of sodium hypochlorite on S. aureus isolates derived from lesional skin of patients with AD. Results: SEM revealed clusters of coccoid bacteria embedded in fibrin and extracellular substances at the skin of a patient with infected AD. At concentrations of 0·01-0·08%, sodium hypochlorite showed antibacterial effects against planktonic cells. Eradication of S. aureus biofilms in vitro was observed in concentrations ranging from 0·01% to 0·16%. Confocal laser scanning microscopy confirmed these results. Finally, when human AD skin was subjected to sodium hypochlorite in an ex vivo model, a dose of 0·04% reduced the bacteria derived from AD skin. Conclusions: Sodium hypochlorite has antimicrobial and antibiofilm effects against clinical S. aureus isolates. Our findings suggest usage of a higher concentration than currently used in bleach baths of patients with skin-infected AD
    corecore