81 research outputs found

    Towards Porting Operating Systems with Program Synthesis

    Full text link
    The end of Moore's Law has ushered in a diversity of hardware not seen in decades. Operating system (and system software) portability is accordingly becoming increasingly critical. Simultaneously, there has been tremendous progress in program synthesis. We set out to explore the feasibility of using modern program synthesis to generate the machine-dependent parts of an operating system. Our ultimate goal is to generate new ports automatically from descriptions of new machines. One of the issues involved is writing specifications, both for machine-dependent operating system functionality and for instruction set architectures. We designed two domain-specific languages: Alewife for machine-independent specifications of machine-dependent operating system functionality and Cassiopea for describing instruction set architecture semantics. Automated porting also requires an implementation. We developed a toolchain that, given an Alewife specification and a Cassiopea machine description, specializes the machine-independent specification to the target instruction set architecture and synthesizes an implementation in assembly language with a customized symbolic execution engine. Using this approach, we demonstrate successful synthesis of a total of 140 OS components from two pre-existing OSes for four real hardware platforms. We also developed several optimization methods for OS-related assembly synthesis to improve scalability. The effectiveness of our languages and ability to synthesize code for all 140 specifications is evidence of the feasibility of program synthesis for machine-dependent OS code. However, many research challenges remain; we also discuss the benefits and limitations of our synthesis-based approach to automated OS porting.Comment: ACM Transactions on Programming Languages and Systems. Accepted on August 202

    Assessment of Cardiovascular Health of Children Ages 6 to 10 Years Conceived by Assisted Reproductive Technology

    Get PDF
    Importance: Assisted reproductive technology (ART) has been widely used for treatment of infertility and has brought millions of births worldwide. The health of offspring conceived by ART has been of much concern, and adverse cardiovascular health outcomes have been reported by previous studies.Objective: To assess the cardiovascular health of children conceived by ART.Design, setting, and participants: This cohort study was conducted among participants recruited from November 2017 to February 2019. Participants were 382 children conceived by ART who were selected from a single reproductive center and 382 children who were naturally conceived, randomly selected from a primary school, and matched by sex, age, and maternal age at the child's birth (2 years older or younger). Data were analyzed from March 2019 through December 2019.Exposures: Conception by ART.Main outcomes and measures: Blood pressure was measured, and echocardiography was performed to determine left ventricular structural and functional parameters. Adjusted relative wall thickness (aRWT) was found for age, with high RWT defined as an aRWT of 0.375 or more.Results: Among 764 children aged 6 to 10 years, 382 children were conceived by ART (mean [SD] age, 7.20 [1.21] years; 201 [52.6%] boys) and 382 children were naturally conceived (mean [SD] age, 7.20 [1.21] years; 201 [52.6%] boys). Children conceived by ART had statistically significantly increased mean (SD) height (130.2 [9.5] cm vs 128.5 [8.1] cm; P = .007) and body mass index (17.6 [3.6] vs 17.1 [2.7]; P = .03). Those conceived by ART, compared with children in the matched control group, had statistically significantly increased blood pressure (mean [SD] systolic blood pressure, 105.5 [6.9] mm Hg vs 103.5 [8.4] mm Hg; adjusted P P P P 2.7 vs 28.28 [3.54] g/m2.7; adjusted P P P = .03), high RWT (61 children [16.0%] vs 0 children; P P for left ventricle remodeling Conclusions and relevance: This study found that children conceived by ART had increased blood pressure and unfavorable changes in left ventricular structure and function compared with children who were naturally conceived. These findings suggest that further studies are needed to investigate the potential mechanisms and long-term outcomes associated with these differences.</p

    Pengaruh sense of school belonging terhadap student's misbehavior

    Get PDF
    Penelitian ini bertujuan untuk mengetahu pengaruh sense of school belonging terhadap student’s misbehavior. Penelitian ini merupakan penelitian korelasional dengan menggunakan teknnik pengumpulan data berupa skala likert yaitu skala sense of school belonging dan skala student’s misbehavior masing masing terdiri dari 30 aitem yang sudah melalui uji coba. Skala sense of school belonging memiliki reabilitas sebesar 0,899 sedangkan skala student’s misbehavior memiliki reabilitas sebesar 0,924. Subjek penelitian berjumlah 144 siswa dari jumlah populasi sebesar 576 siswa. Pengambilan data menggunakan simple random sampling. Hasil penelitian menujukkan bahwa terdapat pengaruh sense of school belonging terhadap student’s misbehavior dengan nilai signifikansi 0,000 < 0,05. Dalam table model summary pada analisis regresi linier sederhana, sense of school belonging memberikan pengaruh sebesar 17,7% terhadap student’s misbehavior. Pada table correlation, terdapat nilai koerfisien korelasi sebesar -0,420 yang berarti semakin tinggi sense of school belonging maka semakin rendah student’s misbehavior yang dilakukan oleh siswa

    Essential Roles of BCCIP in Mouse Embryonic Development and Structural Stability of Chromosomes

    Get PDF
    BCCIP is a BRCA2- and CDKN1A(p21)-interacting protein that has been implicated in the maintenance of genomic integrity. To understand the in vivo functions of BCCIP, we generated a conditional BCCIP knockdown transgenic mouse model using Cre-LoxP mediated RNA interference. The BCCIP knockdown embryos displayed impaired cellular proliferation and apoptosis at day E7.5. Consistent with these results, the in vitro proliferation of blastocysts and mouse embryonic fibroblasts (MEFs) of BCCIP knockdown mice were impaired considerably. The BCCIP deficient mouse embryos die before E11.5 day. Deletion of the p53 gene could not rescue the embryonic lethality due to BCCIP deficiency, but partially rescues the growth delay of mouse embryonic fibroblasts in vitro. To further understand the cause of development and proliferation defects in BCCIP-deficient mice, MEFs were subjected to chromosome stability analysis. The BCCIP-deficient MEFs displayed significant spontaneous chromosome structural alterations associated with replication stress, including a 3.5-fold induction of chromatid breaks. Remarkably, the BCCIP-deficient MEFs had a ∼20-fold increase in sister chromatid union (SCU), yet the induction of sister chromatid exchanges (SCE) was modestly at 1.5 fold. SCU is a unique type of chromatid aberration that may give rise to chromatin bridges between daughter nuclei in anaphase. In addition, the BCCIP-deficient MEFs have reduced repair of irradiation-induced DNA damage and reductions of Rad51 protein and nuclear foci. Our data suggest a unique function of BCCIP, not only in repair of DNA damage, but also in resolving stalled replication forks and prevention of replication stress. In addition, BCCIP deficiency causes excessive spontaneous chromatin bridges via the formation of SCU, which can subsequently impair chromosome segregations in mitosis and cell division

    A-6G and A-20C Polymorphisms in the Angiotensinogen Promoter and Hypertension Risk in Chinese: A Meta-Analysis

    Get PDF
    BACKGROUND: Numerous studies in Chinese populations have evaluated the association between the A-6G and A-20C polymorphisms in the promoter region of angiotensinogen gene and hypertension. However, the results remain conflicting. We carried out a meta-analysis for these associations. METHODS AND RESULTS: Case-control studies in Chinese and English publications were identified by searching the MEDLINE, EMBASE, CNKI, Wanfang, CBM, and VIP databases. The random-effects model was applied for dichotomous outcomes to combine the results of the individual studies. We finally selected 24 studies containing 5932 hypertensive patients and 5231 normotensive controls. Overall, we found significant association between the A-6G polymorphism and the decreased risk of hypertension in the dominant genetic model (AA+AG vs. GG: P=0.001, OR=0.71, 95%CI 0.57-0.87, P(heterogeneity)=0.96). The A-20C polymorphism was significantly associated with the increased risk for hypertension in the allele comparison (C vs. A: P=0.03, OR=1.14, 95%CI 1.02-1.27, P(heterogeneity)=0.92) and recessive genetic model (CC vs. CA+AA: P=0.005, OR=1.71, 95%CI 1.18-2.48, P(heterogeneity)=0.99). In the subgroup analysis by ethnicity, significant association was also found among Han Chinese for both A-6G and A-20C polymorphisms. A borderline significantly decreased risk of hypertension between A-6G and Chinese Mongolian was seen in the allele comparison (A vs. G: P=0.05, OR=0.79, 95%CI 0.62-1.00, P(heterogeneity)=0.84). CONCLUSION: Our meta-analysis indicated significant association between angiotensinogen promoter polymorphisms and hypertension in the Chinese populations, especially in Han Chinese

    Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk

    Get PDF
    The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project-imputed genotype data in up to similar to 370,000 women, we identify 389 independent signals (P <5 x 10(-8)) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain similar to 7.4% of the population variance in age at menarche, corresponding to similar to 25% of the estimated heritability. We implicate similar to 250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility

    Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk

    Get PDF
    The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project–imputed genotype data in up to ~370,000 women, we identify 389 independent signals (P < 5 × 108^{−8}) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain ~7.4% of the population variance in age at menarche, corresponding to ~25% of the estimated heritability. We implicate ~250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility

    Animal models of the placenta accreta spectrum: current status and further perspectives

    Get PDF
    Placenta accreta spectrum disorder (PAS) is a kind of disease of placentation defined as abnormal trophoblast invasion of part or all of the placenta into the myometrium, even penetrating the uterus. Decidual deficiency, abnormal vascular remodeling in the maternal–fetal interface, and excessive invasion by extravillous trophoblast (EVT) cells contribute to its onset. However, the mechanisms and signaling pathways underlying such phenotypes are not fully understood, partly due to the lack of suitable experimental animal models. Appropriate animal models will facilitate the comprehensive and systematic elucidation of the pathogenesis of PAS. Due to the remarkably similar functional placental villous units and hemochorial placentation to humans, the current animal models of PAS are based on mice. There are various mouse models induced by uterine surgery to simulate different phenotypes of PAS, such as excessive invasion of EVT or immune disturbance at the maternal–fetal interface, which could define the pathological mechanism of PAS from the perspective of the “soil.” Additionally, genetically modified mouse models could be used to study PAS, which is helpful to exploring the pathogenesis of PAS from the perspectives of both “soil” and “seed,” respectively. This review details early placental development in mice, with a focus on the approaches of PAS modeling. Additionally, the strengths, limitations and the applicability of each strategy and further perspectives are summarized to provide the theoretical foundation for researchers to select appropriate animal models for various research purposes. This will help better determine the pathogenesis of PAS and even promote possible therapy

    Speed Control Effect Study on Optical Illusion Deceleration Markings

    No full text
    The optical illusion deceleration marking is one of the commonly used speed control measures. In this research, the authors analyzed operating speed and trajectory of motor vehicle at intersection where optical illusion deceleration marking is installed. Quantitative and qualitative evaluation on effect of optical illusion deceleration marking is conducted. Results showed that optical illusion deceleration marking would help to reduce operating speed and average speed by 5-10km/h, to regulate motorcycle driver behavior, and to reduce speed difference, so that driving safety is ensured. Optical illusion deceleration marking is suitable for accident prone road sections on two-lane highways which main vehicle types are passenger car and motorcycle
    corecore