10 research outputs found

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Sheng-ji Hua-yu formula promotes diabetic wound healing of re-epithelization via Activin/Follistatin regulation

    No full text
    Abstract Background Sheng-ji Hua-yu(SJHY) formula is one of the most useful Traditional Chinese medicine (TCM) in the treatment of the delayed diabetic wound. However, elucidating the related molecular biological mechanism of how the SJHY Formula affects excessive inflammation in the process of re-epithelialization of diabetic wound healing is a task urgently needed to be fulfilled. The objectives of this study is to evaluate the effect of antagonisic expression of pro−/anti-inflammatory factors on transforming growth factor-β(TGF-β) superfamily (activin and follistatin) in the process of re-epithelialization of diabetic wound healing in vivo, and to characterize the involvement of the activin/follistatin protein expression regulation, phospho-Smad (pSmad2), and Nuclear factor kappa B p50 (NF-kB) p50 in the diabetic wound healing effects of SJHY formula. Methods SJHY Formula was prepared by pharmaceutical preparation room of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine. Diabetic wound healing activity was evaluated by circular excision wound models. Wound healing activity was examined by macroscopic evaluation. Activin/follistatin expression regulation, protein expression of pSmad2 and NF-kB p50 in skin tissue of wounds were analyzed by Real Time PCR, Western blot, immunohistochemistry and hematoxylin and eosin (H&E) staining. Results Macroscopic evaluation analysis showed that wound healing of diabetic mice was delayed, and SJHY Formula accelerated wound healing time of diabetic mice. Real Time PCR analysis showed higher mRNA expression of activin/follistatin in diabetic delayed wound versus the wound in normal mice. Western Blot immunoassay analysis showed reduction of activin/follistatin proteins levels by SJHY Formula treatment 15 days after injury. Immunohistochemistry investigated the reduction of pSmad2 and NF-kB p50 nuclear staining in the epidermis of diabetic SJHY versus diabetic control mice on day 15 after wounding. H&E staining revealed that SJHY Formula accelerated re-epithelialization of diabetic wound healing. Conclusion The present study found that diabetic delayed wound healing time is closely related to the high expression level of activin/follistatin, which leads to excessive inflammation in the process of re-epithelization. SJHY Formula accelerates re-epithelialization and healing time of diabetic wounds through decreasing the high expression of activin/follistatin. Graphical abstrac

    Secondary phases strengthening-toughening effects in the Mo–TiC–La2O3 alloys

    No full text
    Mo–TiC–La2O3 molybdenum alloys were strengthened and toughened by the synergistic action of nano-carbide particles and rare earth oxides. In this paper, the Mo–TiC–La2O3 alloy system was prepared by powder metallurgy. The microstructure was characterized by optical, scanning, and transmission electron microscopy. The mechanical properties were tested using the hardness tester and universal tensile testing machine. The grain size of the Mo–TiC–La2O3 alloy is smaller than the Mo–TiC and Mo–La2O3 alloys. The strength and elongation of annealed Mo–TiC–La2O3 alloy are 1291 MPa and 6.6%, respectively. The strength and ductility of the annealed Mo–TiC–La2O3 alloy are higher than the Mo–TiC and Mo–La2O3 alloys. According to the interfacial mismatch between the secondary phases and the matrix, along with oxygen impurities interactions, the mechanisms of strengthening and toughening of the secondary phases in the Mo–TiC–La2O3 alloy were revealed
    corecore