3,928 research outputs found

    A Novel Deep Knowledge-based Learning Method for Wind Speed Forecast

    Full text link
    The increasing installation rate of wind power poses great challenges to the global power system. In order to ensure the reliable operation of the power system, it is necessary to accurately forecast the wind speed and power of the wind turbines. At present, deep learning is progressively applied to the wind speed prediction. Nevertheless, the recent deep learning methods still reflect the embarrassment for practical applications due to model interpretability and hardware limitation. To this end, a novel deep knowledge-based learning method is proposed in this paper. The proposed method hybridizes pre-training method and auto-encoder structure to improve data representation and modeling of the deep knowledge-based learning framework. In order to form knowledge and corresponding absorbers, the original data is preprocessed by an optimization model based on correlation to construct multi-layer networks (knowledge) which are absorbed by sequence to sequence (Seq2Seq) models. Specifically, new cognition and memory units (CMU) are designed to reinforce traditional deep learning framework. Finally, the effectiveness of the proposed method is verified by three wind prediction cases from a wind farm in Liaoning, China. Experimental results show that the proposed method increases the stability and training efficiency compared to the traditional LSTM method and LSTM/GRU-based Seq2Seq method for applications of wind speed forecasting

    Submillimeter/millimeter observations of the high-mass star forming region IRAS 22506+5944

    Full text link
    The mapping observations of CO J=2−1J=2-1, CO J=3−2J=3-2, 13^{13}CO J=2−1J=2-1 and 13^{13}CO J=3−2J=3-2 lines in the direction of IRAS 22506+5944 have been made. The results show that the cores in the J=2−1J=2-1 transition lines have a similar morphology to those in the J=3−2J=3-2 transition lines. Bipolar molecular outflows are verified. The prior IRAS 22506+5944 observations indicated that two IRAS sources and three H2_{2}O masers were located close to the peak position of the core. One of the IRAS sources may be the driving source of the outflows. In addition, the H2_{2}O masers may occur in relatively warm environments. The parameters of the dense core and outflow, obtained by the LTE method, indicate that IRAS 22506+5944 is a high-mass star formation region.Comment: 8 pages, 4 figures, published in RA

    Constraints on peculiar velocity distribution of binary black holes using gravitational waves with GWTC-3

    Full text link
    The peculiar velocity encodes rich information about the formation, dynamics, evolution, and merging history of binary black holes. In this work, we employ a hierarchical Bayesian model to infer the peculiar velocity distribution of binary black holes for the first time using GWTC-3 by assuming a Maxwell-Boltzmann distribution for the peculiar velocities. The constraint on the peculiar velocity distribution parameter is rather weak and uninformative with the current GWTC-3 data release. However, the measurement of the peculiar velocity distribution can be significantly improved with the next-generation ground-based gravitational wave detectors. For instance, the uncertainty on the peculiar velocity distribution parameter will be measured within ∼\sim 10\% with 10310^3 golden binary black hole events for the Einstein Telescope. We, therefore, conclude that our statistical approach provides a robust inference for the peculiar velocity distribution.Comment: 15 pages, 2 figures

    The First Data Release of the Beijing-Arizona Sky Survey

    Full text link
    The Beijing-Arizona Sky Survey (BASS) is a new wide-field legacy imaging survey in the northern Galactic cap using the 2.3m Bok telescope. The survey will cover about 5400 deg2^2 in the gg and rr bands, and the expected 5σ\sigma depths (corrected for the Galactic extinction) in the two bands are 24.0 and 23.4 mag, respectively. BASS started observations in January 2015, and has completed about 41% of the whole area as of July 2016. The first data release contains both calibrated images and photometric catalogs obtained in 2015 and 2016. The depths of single-epoch images in the two bands are 23.4 and 22.9 mag, and the full depths of three epochs are about 24.1 and 23.5 mag, respectively.Comment: 16 pages, published by A

    IDO Immune Status after Chemoradiation May Predict Survival in Lung Cancer Patients

    Get PDF
    Host immunity influences the impact of radiotherapy (RT) in cancer, but mechanistic connections remain obscure. In this study, we investigated the relationship of indoleamine 2,3-dioxygenase (IDO) systemic activity on clinical outcomes in RT-treated non-small cell lung cancer (NSCLC). IDO-mediated production of kynurenine and the kynurenine:tryptophan ratio in patient blood serum were determined for stage III NSCLC patients at times before, during, and after RT administration and then correlated to overall survival (OS), progression-free survival, and disease progression rate in patients. We found the impact of RT on these serum IDO markers to be heterogeneous in patients. On average, kynurenine:tryptophan ratios were reduced during RT but restored after RT. Notably, both baseline levels of kynurenine:tryptophan and changes in the levels of kynurenine after RT were significantly associated with OS. When combined, favorable change and favorable baseline corresponded with very long-term OS (median OS was not reached after 57 months of median follow-up). Favorable change combined with unfavorable baseline still corresponded with a lack of distant metastases. Our results suggest that RT alters IDO-mediated immune status in NSCLC patients and that changes in this serum biomarker may be useful to predict outcomes and perhaps personalize RT dosage to improve survival.Significance: Radiotherapy appears to influence systemic IDO activity and to exert a significant impact on metastatic risk and overall survival, with possible implications for defining a biomarker to optimize radiation dose in patients to improve outcomes. Cancer Res; 78(3); 809-16. ©2017 AACR

    Comparative study of mesenchymal stem cells from C57BL/10 and mdx mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human mesenchymal stem cells (MSCs) have been studied and applied extensively because of their ability to self-renew and differentiate into various cell types. Since most human diseases models are murine, mouse MSCs should have been studied in detail. The mdx mouse – a Duchenne muscular dystrophy model – was produced by introducing a point mutation in the dystrophin gene. To understand the role of dystrophin in MSCs, we compared MSCs from mdx and C57BL/10 mice, focusing particularly on the aspects of light and electron microscopic morphology, immunophenotyping, and differentiation potential.</p> <p>Results</p> <p>Our study showed that at passage 10, mdx-MSCs exhibited increased heterochromatin, larger vacuoles, and more lysosomes under electron microscopy compared to C57BL/10-MSCs. C57BL/10-MSCs formed a few myotubes, while mdx-MSCs did not at the same passages. By passage 21, mdx-MSCs but not C57BL/10-MSCs had gradually lost their proliferative ability. In addition, a significant difference in the expression of CD34, not Sca-1 and CD11b, was observed between the MSCs from the 2 mice.</p> <p>Conclusion</p> <p>Our current study reveals that the MSCs from the 2 mice, namely, C57BL/10 and mdx, exhibit differences in proliferative and myogenic abilities. The results suggest that the changes in mouse MSC behavior may be influenced by lack of dystrophin protein in mdx mouse.</p

    D-Serine Contributes to Seizure Development via ERK Signaling

    Get PDF
    A seizure is one of the leading neurological disorders. NMDA receptor-mediated neuronal excitation has been thought to be essential for epileptogenesis. As an endogenous co-agonist of the NMDA receptor, D-serine has been suggested to play a role in epileptogenesis. However, the underlying mechanisms remain unclear. In the current study, we investigated the effects of antagonizing two key enzymes in D-serine metabolism on the development of seizures and the downstream signaling. Our results showed that serine racemase (SR), a key enzyme in regulating the L-to-D-serine conversion, was significantly up-regulated in hippocampal astrocytes in rats and patients who experienced seizure, in comparison with control rats and patients. L-aspartic acid β-hydroxamate (LaaβH), an inhibitor of SR, significantly prolonged the latencies of seizures, shortened the durations of seizures, and decreased the total EEG power in rats. In contrast, D-amino acid oxidase inhibitor 5-chlorobenzo[d]isoxazol-3-ol (CBIO), which can increase D-serine levels, showed the opposite effects. Furthermore, our data showed that LaaβH and CBIO significantly affected the phosphorylation of Extracellular Signal-regulated Kinase (ERK). Antagonizing or activating ERK could significantly block the effects of LaaβH/CBIO on the occurrence of seizures. In summary, our study revealed that D-serine is involved in the development of epileptic seizures, partially through ERK signaling, indicating that the metabolism of D-serine may be targeted for the treatment of epilepsy

    AVNP2 protects against cognitive impairments induced by C6 glioma by suppressing tumour associated inflammation in rats

    Get PDF
    © 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).Glioblastoma is a kind of malignant tumour and originates from the central nervous system. In the last century, some researchers and clinician have noticed that the psychosocial and neurocognitive functioning of patients with malignant gliomas can be impaired. Many clinical studies have demonstrated that part of patients, adults or children, diagnosed with glioblastoma will suffer from cognitive deficiency during their clinical course, especially in long-term survivors. Many nanoparticles (NPs) can inhibit the biological functions of tumours by modulating tumour-associated inflammation, which provokes angiogenesis and tumour growth. As one of the best antiviral nanoparticles (AVNPs), AVNP2 is the 2nd generation of AVNP2 that have been conjugated to graphite-graphene for improving physiochemical performance and reducing toxicity. AVNP2 inactivates viruses, such as the H1N1 and H5N1influenza viruses and even the SARS coronavirus, while it inhibits bacteria, such as MRSA and E. coli. As antimicrobials, nanoparticles are considered to be one of the vectors for the administration of therapeutic compounds. Yet, little is known about their potential functionalities and toxicities to the neurotoxic effects of cancer. Herein, we explored the functionality of AVNP2 on inhibiting C6 in glioma-bearing rats. The novel object-recognition test and open-field test showed that AVNP2 significantly improved the neuro-behaviour affected by C6 glioma. AVNP2 also alleviated the decline of long-term potentiation (LTP) and the decreased density of dendritic spines in the CA1 region induced by C6. Western blot assay and immunofluorescence staining showed that the expressions of synaptic-related proteins (PSD-95 and SYP) were increased, and these findings were in accordance with the results mentioned above. It revealed that the sizes of tumours in C6 glioma-bearing rats were smaller after treatment with AVNP2. The decreased expression of inflammatory factors (IL-1β, IL-6 and TNF-α) by Western blotting assay and ELISA, angiogenesis protein (VEGF) by Western blotting assay and other related proteins (BDNF, NF-ĸB, iNOS and COX-2) by Western blotting assay in peri-tumour tissue indicated that AVNP2 could control tumour-associated inflammation, thus efficiently ameliorating the local inflammatory condition and, to some extent, inhibiting angiogenesis in C6-bearing rats. In conclusion, our results suggested that AVNP2 could have an effect on the peri-tumor environment, obviously restraining the growth progress of gliomas, and eventually improving cognitive levels in C6-bearing rats.Peer reviewedProo

    Tumor-released autophagosomes induces CD4

    Get PDF
    BACKGROUND: CD4 METHODS: TRAPs isolated from tumor cell lines and pleural effusions or ascites of cancer patients were incubated with CD4 RESULTS: Heat shock protein 90α (HSP90α) on the surface of TRAPs from malignant effusions of cancer patients and tumor cell lines stimulated CD4 CONCLUSIONS: HSP90α on the surface of TRAPs programs the immunosuppressive functions of CD
    • …
    corecore