11,195 research outputs found

    Physical Properties of Galactic Planck Cold Cores revealed by the Hi-GAL survey

    Get PDF
    Previous studies of the initial conditions of massive star formation have mainly targeted Infrared-Dark Clouds (IRDCs) toward the inner Galaxy. This is due to the fact that IRDCs were first detected in absorption against the bright mid-IR background, requiring a favourable location to be observed. By selection, IRDCs represent only a fraction of the Galactic clouds capable of forming massive stars and star clusters. Due to their low dust temperatures, IRDCs are bright in the far-IR and millimeter and thus, observations at these wavelengths have the potential to provide a complete sample of star-forming massive clouds across the Galaxy. Our aim is to identify the clouds at the initial conditions of massive star formation across the Galaxy and compare their physical properties as a function of their Galactic location. We have examined the physical properties of a homogeneous galactic cold core sample obtained with the Planck satellite across the Galactic Plane. With the use of Herschel Hi-GAL observations, we have characterized the internal structure of them. By using background-subtracted Herschel images, we have derived the H2 column density and dust temperature maps for 48 Planck clumps. Their basic physical parameters have been calculated and analyzed as a function of location within the Galaxy. These properties have also been compared with the empirical relation for massive star formation derived by Kauffmann & Pillai (2010). Most of the Planck clumps contain signs of star formation. About 25% of them are massive enough to form high mass stars. Planck clumps toward the Galactic center region show higher peak column densities and higher average dust temperatures than those of the clumps in the outer Galaxy. Although we only have seven clumps without associated YSOs, the Hi-GAL data show no apparent differences in the properties of Planck cold clumps with and without star formation.Comment: 22 pages, 11 figures, accepted for publication in A&

    DYN3D input deck for 02

    Get PDF

    An effective theory of accelerated expansion

    Get PDF
    We work out an effective theory of accelerated expansion to describe general phenomena of inflation and acceleration (dark energy) in the Universe. Our aim is to determine from theoretical grounds, in a physically-motivated and model independent way, which and how many (free) parameters are needed to broadly capture the physics of a theory describing cosmic acceleration. Our goal is to make as much as possible transparent the physical interpretation of the parameters describing the expansion. We show that, at leading order, there are five independent parameters, of which one can be constrained via general relativity tests. The other four parameters need to be determined by observing and measuring the cosmic expansion rate only, H(z). Therefore we suggest that future cosmology surveys focus on obtaining an accurate as possible measurement of H(z)H(z) to constrain the nature of accelerated expansion (dark energy and/or inflation).Comment: In press; minor changes, results unchange

    Factorization and Malleability of RSA Moduli, and Counting Points on Elliptic Curves Modulo N

    Get PDF
    In this paper we address two different problems related with the factorization of an RSA (Rivest-Shamir-Adleman cryptosystem) modulus N. First we show that factoring is equivalent, in deterministic polynomial time, to counting points on a pair of twisted Elliptic curves modulo N. The second problem is related with malleability. This notion was introduced in 2006 by Pailler and Villar, and deals with the question of whether or not the factorization of a given number N becomes substantially easier when knowing the factorization of another one N′ relatively prime to N. Despite the efforts done up to now, a complete answer to this question was unknown. Here we settle the problem affirmatively. To construct a particular N′ that helps the factorization of N, we use the number of points of a single elliptic curve modulo N. Coppersmith's algorithm allows us to go from the factors of N′ to the factors of N in polynomial time

    Cosmological Signatures of Interacting Neutrinos

    Get PDF
    We investigate signatures of neutrino scattering in the Cosmic Microwave Background (CMB) and matter power spectra, and the extent to which present cosmological data can distinguish between a free streaming or tightly coupled fluid of neutrinos. If neutrinos have strong non-standard interactions, for example, through the coupling of neutrinos to a light boson, they may be kept in equilibrium until late times. We show how the power spectra for these models differ from more conventional neutrino scenarios, and use CMB and large scale structure data to constrain these models. CMB polarization data improves the constraints on the number of massless neutrinos, while the Lyman--α\alpha power spectrum improves the limits on the neutrino mass. Neutrino mass limits depend strongly on whether some or all of the neutrino species interact and annihilate. The present data can accommodate a number of tightly-coupled relativistic degrees of freedom, and none of the interacting-neutrino scenarios considered are ruled out by current data -- although considerations regarding the age of the Universe disfavor a model with three annihilating neutrinos with very large neutrino masses.Comment: 17 pages, 14 figures, minor changes and references added, published in Phys. Rev.

    HE 0435-1223: a wide separation quadruple QSO and gravitational lens

    Full text link
    We report the discovery of a new gravitationally lensed QSO, at a redshift z = 1.689, with four QSO components in a cross-shaped arrangement around a bright galaxy. The maximum separation between images is 2.6 arcsec, enabling a reliable decomposition of the system. Three of the QSO components have g = 19.6, while component A is about 0.6 mag brighter. The four components have nearly identical colours, suggesting little if any dust extinction in the foreground galaxy. The lensing galaxy is prominent in the i band, weaker in r and not detected in g. Its spatial profile is that of an elliptical galaxy with a scale length of \sim 12 kpc. Combining the measured colours and a mass model for the lens, we estimate a most likely redshift range of 0.3 < z < 0.4. Predicted time delays between the components are \la 10 days. The QSO shows evidence for variability, with total g band magnitudes of 17.89 and 17.71 for two epochs separated by 2\sim 2 months. However, the relative fluxes of the components did not change, indicating that the variations are intrinsic to the QSO rather than induced by microlensing.Comment: 7 pages, submitted to Astronomy and Astrophysic

    BL Lacertae identifications in a ROSAT-selected sample of Fermi unidentified objects

    Full text link
    The optical spectroscopic followup of 27 sources belonging to a sample of 30 high-energy objects selected by positionally cross correlating the first Fermi/LAT Catalog and the ROSAT All-Sky Survey Bright Source Catalog is presented here. It has been found or confirmed that 25 of them are BL Lacertae objects (BL Lacs), while the remaining two are Galactic cataclysmic variables (CVs). This strongly suggests that the sources in the first group are responsible for the GeV emission detected with Fermi, while the two CVs most likely represent spurious associations. We thus find an 80% a posteriori probability that the sources selected by matching GeV and X-ray catalogs belong to the BL Lac class. We also show suggestions that the BL Lacs selected with this approach are probably high-synchrotron-peaked sources and in turn good candidates for the detection of ultra-high-energy (TeV) photons from them.Comment: 16 pages, 9 figures, 4 tables, one appendix, accepted for publication on A&A, main journal. Tables 1-3 and Figures 2-6 will only be published in the electronic edition of the journa

    The Gaia-ESO Survey: dynamics of ionized and neutral gas in the Lagoon nebula (M8)

    Get PDF
    We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M8), using VLT/FLAMES data from the Gaia-ESO Survey. We explore the connections between the nebular gas and the stellar population of the associated star cluster NGC6530. We characterize through spectral fitting emission lines of H-alpha, [N II] and [S II] doublets, [O III], and absorption lines of sodium D doublet, using data from the FLAMES/Giraffe and UVES spectrographs, on more than 1000 sightlines towards the entire face of the Lagoon nebula. Gas temperatures are derived from line-width comparisons, densities from the [S II] doublet ratio, and ionization parameter from H-alpha/[N II] ratio. Although doubly-peaked emission profiles are rarely found, line asymmetries often imply multiple velocity components along the line of sight. This is especially true for the sodium absorption, and for the [O III] lines. Spatial maps for density and ionization are derived, and compared to other known properties of the nebula and of its massive stars 9 Sgr, Herschel 36 and HD 165052 which are confirmed to provide most of the ionizing flux. The detailed velocity fields across the nebula show several expanding shells, related to the cluster NGC6530, the O stars 9 Sgr and Herschel 36, and the massive protostar M8East-IR. The origins of kinematical expansion and ionization of the NGC6530 shell appear to be different. We are able to put constrains on the line-of-sight (relative or absolute) distances between some of these objects and the molecular cloud. The large obscuring band running through the middle of the nebula is being compressed by both sides, which might explain its enhanced density. We also find an unexplained large-scale velocity gradient across the entire nebula. At larger distances, the transition from ionized to neutral gas is studied using the sodium lines.Comment: 26 pages, 31 figures, accepted on Astronomy and Astrophysics journa
    corecore