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We investigate signatures of neutrino scattering in the cosmic microwave background (CMB) and
matter power spectra, and the extent to which present cosmological data can distinguish between a free-
streaming or tightly coupled fluid of neutrinos. If neutrinos have strong nonstandard interactions, for
example, through the coupling of neutrinos to a light boson, they may be kept in equilibrium until late
times. We show how the power spectra for these models differ from more conventional neutrino scenarios,
and use CMB and large scale structure data to constrain these models. CMB polarization data improves
the constraints on the number of massless neutrinos, while the Lyman-� power spectrum improves the
limits on the neutrino mass. Neutrino mass limits depend strongly on whether some or all of the neutrino
species interact and annihilate. The present data can accommodate a number of tightly coupled relativistic
degrees of freedom, and none of the interacting-neutrino scenarios considered are ruled out by current
data—although considerations regarding the age of the Universe disfavor a model with three annihilating
neutrinos with very large neutrino masses.
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I. INTRODUCTION

We are in a remarkable era when cosmological data is
both precise and abundant. Measurements of temperature
and polarization fluctuations in the cosmic microwave
background (CMB) radiation (e.g. [1–4]), the matter
power spectrum via galaxy surveys [5,6] and the
Lyman-� forest [7,8], the current and past expansion rates
of the Universe via the Hubble Key Project [9] and obser-
vations of Type Ia supernovae [10], respectively, and the
abundance of light elements predicted by big bang nucleo-
synthesis (BBN) [11] all show striking consistency within
the standard �CDM cosmological model. Robust bounds
can be placed on the forms of matter and energy that
constitute the Universe, and cosmology is now a powerful
particle physics laboratory that constrains the properties of
both the new dark-matter particles demanded by cosmo-
logical data (e.g. [12]) and the familiar particles of the
standard model of particle physics. In many cases these
constraints would be difficult or impossible to obtain in any
other way.

Neutrino physics is an excellent example. Cosmological
techniques for probing neutrino properties rely upon de-
tecting indirect signatures of the relic neutrino background,
which complements the significant experimental and theo-
retical effort that is underway to understand the surprising
physics of the neutrino sector. A particular focus of this
effort has been to set limits on the mass and number density
of relic neutrinos. In this work we instead focus on the
cosmological signatures of neutrino interactions.
address: nfb@caltech.edu
address: pierpa@caltech.edu
llow; Electronic address: krs@ias.edu

06=73(6)=063523(17)$23.00 063523
It is well known that the CMB can be used to constrain
the number of light relativistic degrees of freedom (in
addition to the photon)—conventionally parametrized as
the effective number of neutrino species, Neff

� . A relative
increase in the radiation density delays the epoch of matter-
radiation equality, and leads to an enhanced integrated
Sachs-Wolfe (ISW) effect. Present CMB limits are 1:6 �
Neff
� � 7:1 [13,14]. Big bang nucleosynthesis (BBN) also

constrains Neff
� , as additional radiation increases the ex-

pansion rate and alters the expected primordial abundance
of helium. The current BBN bound is (up to various flavor-
dependent subtleties) Neff

� < 3:3–4 [11].
The standard cosmological model predicts Neff

� � 3:04,
consisting of the three known neutrino species, plus a small
correction that accounts for the neutrino heating from
electron-positron annihilation and finite-temperature QED
effects (e.g. [15]). With only the three standard neutrino
species, BBN constraints, combined with neutrino mixing,
no longer permit the possibility of a significantly enhanced
Neff
� due to large chemical potentials [16]. However, it is

important to bear in mind that Neff
� may include not only

neutrinos, but any light particles that are thermally popu-
lated in the early universe. In models containing sterile
neutrinos or other light relativistic degrees of freedom, the
BBN limits may be substantially modified, and Neff

� > 3 is
still possible [17]. (In addition, Neff

� < 3 can be obtained if
the reheating temperature following inflation is low [18].)
Moreover, the relativistic energy density may evolve be-
tween the time of BBN and CMB decoupling, so Neff

� jBBN

and Neff
� jCMB need not be the same quantity (e.g. [19,20]).

In addition to the total relativistic energy density, cos-
mology can also be used to probe interactions in the
neutrino sector. Neutrinos with only standard model
couplings interact via the weak force, and decouple when
-1 © 2006 The American Physical Society
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FIG. 1. The interactions that keep the neutrinos and the scalar
coupled. If the scalar is heavier than m�, the process �$ �� is
replaced by �$ ��.

2For pseudoscalar couplings, two-boson exchange can mediate
extremely weak spin-independent forces [32].

3We set all three neutrino species to a common mass m�, with
m� �

������������
�m2

sol

q
,
�������������
�m2

atm

p
. When this approximation does not hold,

the effects of neutrino mass are negligible in present cosmologi-
cal data.

4See also, Ref. [34], which studies the case of a scalar boson
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T ’ 1 MeV. At later times, they free-stream, and interact
only via gravity. In this paper we investigate a class of
models which feature extra, nonstandard, neutrino inter-
actions. In these models, neutrinos interact strongly with a
new scalar boson, which is brought into thermal equilib-
rium through its coupling to the neutrinos. Rather than
free-streaming, the neutrinos form a tightly coupled fluid
with the new scalar.

These models generically have nonstandard values for
Neff
� , but, perhaps more interestingly, the absence of neu-

trino free-streaming leaves a distinctive signature in the
CMB. If the neutrinos are part of a tightly coupled fluid,
they are fully characterized by density and velocity pertur-
bations, and anisotropic stress is negligible. In [21,22] it
was shown that the current Wilkinson Microwave
Anisotropy Probe (WMAP) CMB measurements already
have some sensitivity to this effect. This is significant
because in addition to being able to infer the presence of
relativistic degrees of freedom, we may now also be able to
say something about the interactions of the particles which
make up that relativistic energy density.

In this paper we address the question, how much rela-
tivistic energy density is there, and what fraction of it must
consist of weakly interacting particles? We answer this
question in general, and also in the context of specific
models.

II. INTERACTION MODEL

Although the results of our analysis are valid in a wider
context than the interaction model we now describe, we
examine in this section a simple physical model of non-
standard neutrino interactions for illustrative purposes.

We consider the coupling of neutrinos to each other with
bosons, through tree level scalar or pseudoscalar couplings
of the form

L �� � hij ��i�j�� gij ��i�5�j�; (1)

where the boson � is taken to be light or massless.1 Such
couplings arise in Majoron-like models, viable examples of
which have been discussed in Ref. [24]. Recently, these
models have been investigated in the context of late-time
phase transitions, whereby the neutrinos acquire their
masses via a symmetry breaking phase transition at a low
scale, which occurs late in the history of the universe
[19,25]. In order to be as model independent as possible,
we assume the new couplings are fixed independently of
the neutrino mass. We also make no distinction between g
or h type couplings, nor between neutrinos or
antineutrinos.

Existing bounds on these new couplings are extremely
weak. For example, the solar neutrino [26] and meson
decay [27] limits are jgj & 10�2. Neutrinoless double
1Couplings of neutrinos to new heavy bosons are tighty con-
strained [23].
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beta decay sets a limit gee < 10�4 [28], but does not
constrain other elements of the coupling matrix g��.
Supernova constraints exclude a narrow (and model-
dependent) range of couplings around g� 10�5 [29].
Even couplings which are much smaller than these limits
can have significant cosmological consequences.

For a massless � boson, scalar couplings could mediate
long-range forces with possible cosmological consequen-
ces [30,31], while pseudoscalar couplings mediate spin-
dependent long-range forces, which have no net effect on
an unpolarized medium.2 However, if the� boson has even
a tiny mass H0 � m� � 1 eV the interaction is short
ranged and insignificant over cosmological distance scales.

The � boson can be brought into thermal equilibrium
through its coupling to the neutrinos, and the ��� system
may stay in thermal contact until late times. The processes
involved, shown in Fig. 1, are ��$ ��, ��$ ��,
��$ ��, and either �$ �� or ��$ �, depending on
whether the scalar mass, m�, is smaller or larger than the
neutrino mass, m�.3 For sufficiently large couplings,
the ��� system will remain in thermal contact until the
temperature drops below m� or m�. At this point the
heavier of the two particles will annihilate or decay.

The possibility of altering the relativistic energy density
through neutrino decay has been considered in [33],4 while
the cosmological effects of neutrino annihilation or self-
interaction were examined in [36,37]. In particular, [36]
decaying into neutrinos, thus distorting the usual thermal neu-
trino distribution. Related scenarios, in which hot dark matter is
produced by the decay of heavier particles, are examined in
Ref. [35].
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considered the introduction of self-interactions as a mecha-
nism to eliminate neutrino free-streaming, thus obtaining
neutrinos which behave as cold dark matter, despite their
light mass. However, in these scenarios the neutrinos were
taken to be heavy enough (m� � 10 eV) to contribute all of
the dark matter, which is no longer a viable possibility. As
we will show below, the combined use of neutrino mass
limits and cosmological observations now allow much
more sensitive constraints to be placed on these types of
models.

The ultimate effect of the interaction shown in Eq. (1)
can be split into two distinct cases, depending on whether
the scalar is lighter or heavier than the neutrinos. We now
discuss these cases in turn.

A. Light scalars, m� <m�
When m� <m�, the neutrinos can annihilate to scalars

via the process ��! �� when the temperature drops
belowm�. Complete annihilation occurs provided that g *

10�5, although smaller couplings would suffice to keep the
��� system in thermal equilibrium until late times via
decay/inverse-decay processes. Obtaining partial annihila-
tion (rather than either negligible annihilation or complete
annihilation) would require fine-tuning of g.

If all three neutrino species completely annihilate, they
will make no contribution to the dark-matter density in the
universe today, as we would be left with a ‘‘neutrinoless
universe’’ at late times. This eliminates cosmological con-
straints on neutrino mass [20]. However, a nonzero� mass
would make a small contribution to the dark-matter den-
sity. Note that m� <m� implies the neutrinos are unstable,
and may decay via �i ! �j�. For the same range of
couplings, g * 10�5, this could lead to neutrino decay
over astronomical distances, which is testable in future
neutrino telescope experiments [38].

B. Light neutrinos, m� >m�
Alternatively, if m� >m�, the scalar will eventually

convert to neutrinos, so that cosmological neutrino mass
bounds do apply. For example, the decay/inverse-decay
process �$ ��, will keep the ��� system tightly
coupled throughout the CMB era, provided g * 10�12

[19]. Once the inverse process becomes kinematically
inaccessible at T �m�, the � bosons will decay to
neutrinos.

III. TIGHTLY-COUPLED PERTURBATION
EQUATIONS

For most parameters of interest, the neutrino mean free
path is much smaller than the scales of interest during the
epoch of CMB decoupling. In this limit, the neutrinos and
bosons form a single, tightly coupled fluid. Perturbations in
this fluid evolve differently, compared to the usual colli-
sionless neutrino background. As they are coupled via
063523
gravity, neutrino perturbations influence the evolution of
photon perturbations and thus neutrino perturbations can
leave a distinctive signature in the CMB. In this section we
discuss the relevant properties of the ��� fluid for
interesting limits of the model considered in Sec. II and
in a more general context.

In the standard scenario, free-streaming damps the neu-
trino density perturbations, and introduces a source of
anisotropic stress, e.g. see [39,40]. In comparison, a tightly
coupled fluid has only density and velocity perturbations,
with the shear stresses and all higher moments in the
Boltzmann hierarchy absent (at least to linear order).
Defining the density and velocity perturbations as � �
��=� and � � ikv, respectively, the equations describing
the evolution of the tightly coupled ��� fluid are

_� � �	1�!

�
��

_h
2

�
� 3

_a
a
	c2
s �!
�; (2)

_� � �
_a
a
	1� 3!
��

_!
1�!

��
c2
s

1�!
k2�; (3)

in the synchronous gauge, where an overdot is a derivative
with respect to conformal time. Here, c2

s � �P=�� is the
adiabatic sound speed and ! � P=� is the equation of
state with � � �� � �� and P � P� � P�. In the limit
where both � and � are relativistic ! � c2

s � 1=3.
However, for nonzero masses, ! and c2

s temporarily de-
crease from 1=3 and deviate from each other, during the
period when � or � starts to become nonrelativistic and
annihilate/decay. We may define an effective number of
standard model neutrinos Nint

� contributed by the ���
fluid with the relation

� � Nint
�

7

8

	2

15
	TSM
� 


4; (4)

where TSM
� � 	4=11
1=3T� is the canonical cosmic neu-

trino background temperature in the standard model. The
value of Nint

� after the heavier species annihilates into the
lighter will be greater than the value before annihilation.
Details of the calculation of w, c2

s , and Nint
� can be found in

the Appendix A.
The differences from standard cosmology in these mod-

els will therefore typically be a combination of (i) elimi-
nation of neutrino free-streaming, (ii) nonstandard equa-
tion of state and sound speed evolution, and (iii) additional
(and perhaps an evolving amount of) relativistic energy
density. We now consider two phenomenological models
(limiting cases of the interaction model of Sec. II) that
exhibit these differences.

A. Model A: Free-streaming vs interacting
(massless particles)

In this section we consider a scenario in which some
fraction of the neutrinos act as a tightly coupled fluid, but
where Neff

� is constant with time. We parametrize this class
-3



FIG. 2 (color online). CMB and matter power spectra as a
function of the fraction of interacting neutrinos, with Neff

� �
NSM
� � Nint

� � 3. The power spectra are normalized (to an arbi-
trary value) at large scale.
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of models by NSM
� and Nint

� , the number of standard model
(free-streaming) and interacting degrees of freedom, re-
spectively, where

Neff
� � NSM

� � Nint
� : (5)

A scenario in which Neff
� is constant in time corresponds,

for example, to the limit m� ! 0 and m� ! 0. However,
even for finite masses, this limit is a good approximation as
long as Neff

� does not evolve significantly during the times
of interest, as would be the case if any annihilation/decay
takes place well before or well after the CMB decoupling
epoch. In particular, this is a reasonable approximation for
the m� >m� models considered in [19], where only mod-
est evolution of Neff

� occurs.
Note that this description is much more general than any

particular limit of a neutrino-scalar interaction model. It
encompasses any scenario in which some fraction of the
energy density is in free-streaming relativistic particles,
and another fraction is in a tightly coupled relativistic fluid,
as long as Neff

� does not evolve significantly.
Figure 2 shows effects on the CMB angular power

spectrum and the matter power spectrum of varying the
number of interacting neutrinos, while Neff

� and all other
cosmological parameters are held fixed. This allows us to
explore the effects of suppressed neutrino free-streaming
alone. In the standard case (Nint

� � 0), when a perturbation
of a given scale enters the horizon, power is transferred
from the neutrino density modes to higher moments of the
neutrino distribution as the neutrinos free-stream out of
gravitational potentials. This effect does not occur for
interacting neutrinos which instead contribute to the gravi-
tational potential and thus enhance the monopole pertur-
bation of the photon distribution and increase the
amplitude of the CMB temperature power spectrum for a
fixed amplitude of primordial perturbations. Indeed, we see
that beyond the first peak the effect of increasing Nint

� in the
CMB can be roughly approximated as a constant offset in
the amplitude of the spectrum. A small shift in the location
of the peaks is also a feature [40]. In the upper panel of
Fig. 3 we show the contributions to the CMB power
spectrum arising from the monopole terms (the physical
temperature perturbation at the last-scattering surface cor-
rected for its gravitational redshift), the velocity terms
(perturbations due to the Doppler shift), and the ISW terms
(perturbations due to the evolving gravitational potentials)
of the source function (see, for example, Refs. [41,42] for a
pedagogical review of the source function). The lower
panel of Fig. 3 shows the difference in CMB power spectra
between models with Nint

� � 3 and Nint
� � 0 keeping

Neff
� � 3 fixed (the extreme models of Fig. 2). While the

change in the monopole dominates the total difference in
the power spectrum at all l, the ISW-monopole cross term
contributes significantly to the difference near the first
peak. Note that this ISW-monopole contribution is nonzero
solely because gravitational potentials evolve differently in
063523
a model with and without free-streaming neutrinos—the
background evolution is identical in the two cases.

As we are in the limit of massless neutrinos, the effect on
the matter power spectrum of suppressing free-streaming is
very minor. Free-streaming has a significant effect on the
matter power spectrum when m� is finite, such that neu-
trinos contribute some fraction of the dark-matter density
today. In that case, the free-streaming of the neutrino hot
dark-matter component damps the growth of structure
while the neutrinos are still relativistic. By comparison,
-4



FIG. 4 (color online). The CMB and matter power spectra as a
function of the number of standard model neutrinos, with Nint

� �
0. The power spectra are normalized (to an arbitrary value) at
large scale.

FIG. 3 (color online). Upper: The CMB power spectra due to
the monopole, velocity, and ISW terms of the source function for
the standard Nint

� � 0 case. (For a pedagogical description of
these terms see, e.g., Refs. [41,42].) Lower: The contribution of
each source term to �Cl, the difference between a model with
Nint
� � 3 and Nint

� � 0 with Neff
� � 3 held fixed. The ISW-

monopole cross term (nonzero due to the differing evolution of
the gravitational potentials) contributes significantly to the dif-
ference in the first peak despite the identical background evolu-
tion of the two models.

COSMOLOGICAL SIGNATURES OF INTERACTING . . . PHYSICAL REVIEW D 73, 063523 (2006)
the effect of modifications to the neutrino perturbations of
massless neutrinos is very small.

For comparison, we show in Fig. 4 the effects on the
CMB angular power spectrum and the matter power spec-
trum of varying the total relativistic energy density, NSM

� ,
063523
while Nint
� and all other cosmological parameters are held

fixed. We see that increasing Neff
� enhances the first peak.

This is the result of a larger ISW effect, due to the delay in
matter-radiation equivalence. There is also a large shift in
the positions of the subsequent peaks, which occurs due to
the change in the conformal time of last scattering. See
Ref. [14] for a discussion of these effects. In Fig. 4, we also
see that the enhanced radiation density suppresses the
matter power spectrum. Again, this is because matter-
-5



FIG. 5 (color online). The evolution of the effective number of
interacting neutrinos Nint

� with m� � 0:1 eV (dashed curves) ,
m� � 1 eV (dotted curves), and m� � 10 eV (solid curves) for
three interacting neutrinos (top/red), two interacting neutrinos
(middle/green), and one interacting neutrino (bottom/blue).
Notice that the Nint

� initially includes an extra 4=7 to account
for the new scalar degree of freedom and that the effective
number of interacting neutrinos after annihilation is greater
than prior to annihilation.
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radiation equivalence, and hence the growth of structure, is
delayed.

The extent to which the various effects discussed above
can be compensated with a change in other cosmological
parameters will be discussed in Sec. V.

B. Model B: Neutrino annihilation to scalars

We now turn to the slightly more complicated scenario
with m� <m�, where the interacting neutrinos can anni-
hilate. We again assume the limit m� ! 0, but allow a
nonzero m�. We specialize to the case of three neutrino
species, and will consider the possibility that either one,
two, or all three neutrino species interact strongly with the
scalar�, which we shall denote by models B1, B2, and B3,
respectively. For couplings constants g * 10�5, the neu-
trino species which are coupled to the scalar will annihilate
when T� �m�. If all three neutrino species annihilate
(model B3) this leaves a ‘‘neutrinoless universe.’’
Cosmological neutrino mass bounds are altered in these
scenarios, because the neutrino species which annihilate
will not make a contribution to the dark matter density
today (i.e., they will not contribute to ��) [20].

A distinctive feature of this scenario is that the neutrino
annihilation will heat the scalars, causing Neff

� to evolve as
the annihilation proceeds. For simplicity, we shall assume
the scalar boson is brought into thermal equilibrium before
the neutrinos thermally decouple from the electrons and
positrons (at T � 1 MeV). The scalar will then initially
contribute an amount �N� � 4=7 to the relativistic energy
density, so that Neff

� ’ 3:57.5 This value will increase as the
annihilation proceeds. For example, if all three neutrinos
annihilate, the final relativistic energy density is equivalent
to N� ’ 6:6 [20] (see also the Appendix A). For realistic
neutrino masses, m� ’ 0� 2 eV, this annihilation occurs
close to the time at which the CMB photons last scatter, so
that the evolution of Neff

� takes place during the CMB
decoupling era. The evolution of Neff

� is shown in Fig. 5.
The evolution of the equation of state, w, and sound speed,
c2
s , during this annihilation epoch is shown in Fig. 6.

The present laboratory limit on neutrino mass is m� <
2:2 eV, set by tritium beta decay experiments [43]. Given
the tiny mass squared differences measured by solar and
atmospheric neutrino oscillation experiments (�m2

sol ’ 7�
10�5 eV2 and �m2

atm ’ 2� 10�3 eV2 [44]), the tritium
bound applies to all three neutrino mass eigenstates. We
shall assume that the three neutrino eigenstates have de-
generate masses, which is a good approximation for m� *

0:1 eV. (We usem� to denote the value of a single neutrino
mass throughout, so that the quantity �m� � 3m�.) In the
FIG. 6 (color online). The evolution of w, the equation of state
(solid curves) and c2

s , the sound speed (dotted curves) as a
function of the scale factor, a, for m� � 1 eV for three interact-
ing neutrinos (bottom/red), two interacting neutrinos (middle/
green), and one interacting neutrino (top/blue). Both deviate
from the value of 1=3 for a relativistic fluid, during the epoch
of annihilation.

5If the scalar were not populated until sometime after the
neutrinos thermally decouple from the e�e� plasma, Neff

� would
not be altered (as energy density would simply be shifted from
one relativistic species to another).
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FIG. 7 (color online). The CMB and matter power spectra, for
varying values of m�, for model B1 (one interacting neutrino and
two standard neutrinos). The power spectra are normalized (to an
arbitrary value) at large scale.

FIG. 8 (color online). The CMB and matter power spectra, for
varying values of m�, for model B3 (three interacting/annihilat-
ing neutrinos). The power spectra are normalized (to an arbitrary
value) at large scale.

COSMOLOGICAL SIGNATURES OF INTERACTING . . . PHYSICAL REVIEW D 73, 063523 (2006)
analysis in Sec. V, we consider neutrino masses in the
allowed range m� � 0–2:2 eV.

For simplicity, we also assume that the scalar has suffi-
ciently strong self-interactions that it continues to behave
as a tightly coupled fluid once the neutrino annihilation is
complete. For early neutrino annihilation (large masses)
this will result in the largest deviations of the CMB spectra
with respect to the standard scenario. For late annihilation
(small masses) the late-time behavior of the scalar is
irrelevant.
063523
Figure 7 shows effects on the CMB angular power
spectrum and matter power spectrum of varying m� in
the model with one interacting neutrino (B1), while
Fig. 8 shows the same effects for the model with three
interacting neutrinos (B3). Here we see a combination of
the effects of free-streaming suppression (compare Fig. 2)
and larger Neff

� (compare Fig. 4). In the CMB spectra, we
see the enhanced overall amplitude which is characteristic
of the tightly coupled neutrinos, together with an enhanced
first peak and shifted subsequent peaks that result from
-7
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increased relativistic energy density. As expected, the ef-
fects on the CMB spectra are more pronounced in model
B3, in which all three neutrinos species annihilate.
Moreover, the effect increases as m� increases, because
larger mass corresponds to earlier annihilation, so that the
extra relativistic energy density is present earlier.

Conversely, the effects on the matter power spectra are
more pronounced in model B1 in which only one neutrino
species annihilates. This is expected, because the remain-
ing neutrinos contribute to the dark-matter density today.
This remaining neutrino hot dark-matter component causes
the usual suppression of the power spectrum that is used to
constrain neutrino mass. However, in the ‘‘neutrinoless’’
model (B3), this suppression of the power spectrum is
absent, because no neutrino dark-matter component re-
mains. A smaller power spectrum suppression does remain,
as shown in Fig. 8. This small effect is a result of enhanced
Neff
� , which slightly delays matter-radiation equivalence

and hence delays the growth of structure. Again, this effect
is more significant for larger m�, because the extra radia-
tion is present earlier. We thus see that the ‘‘neutrinoless
universe’’ model (B3) can accommodate large neutrino
mass, while having little effect on the matter power spec-
trum [20].
TABLE I. The 
2 values and degrees of freedom (DOF), using
the Cosmo data set.

Model 
2 DOF Reduced 
2 	DOF=2
�1=2

A 1515.00 1478 1.025 0.037
B1 1520.17 1479 1.028 0.037
B2 1523.99 1479 1.030 0.037
B3 1526.77 1479 1.032 0.037
IV. DATA

We computed the CMB and large scale structure power
spectra, and performed the parameter estimation with a
modified version of the publicly available Markov Chain
Monte Carlo package, COSMOMC [45,46].

Constraints on the models were evaluated using CMB
data from the WMAP [1], ACBAR [2] and CBI [3] experi-
ments, together with the galaxy power spectra measured by
the 2dF Galaxy Redshift Survey [5] and the Sloan Digital
Sky Survey (SDSS) [6]. In addition, we used the measure-
ment of the Hubble parameter made by the Hubble Space
Telescope (HST) Key Project [9]. This set of data consti-
tutes our basic comparison set (hereafter Cosmo). For
model B3, we imposed a cutoff of 2.2 eV for the neutrino
mass, consistent with the tritium beta decay limit [43].

In addition, we will investigate how the introduction of
the Lyman-� constraints [8] and the CMB polarization as
measured by CBI [4] constrain these models. These two
variants will be named CosmoLy� and CosmoCBIpol,
respectively. We implement the Lyman-� constraints de-
rived in Ref. [7] and we implement them in a similar way
as in Ref. [8], with minor modifications that were sug-
gested by the authors.

Note that SDSS and 2dF data impose a constraint only
on the shape of the power spectrum, P	k
, and not on the
normalization, as we make no assumptions about the bias.
Lyman-� data, however, imposes constraints on both nor-
malization and shape at small scales.
063523
V. RESULTS

We now discuss how the different models fit the data. We
first note that for all of the models, parameters sets can be
found which provide a good global fit to the data, and so
none of the models can be ruled out. For example, in
Table I we report the 
2 values of the best-fit points in
our Markov chains for the case of the Cosmo data set. The
table shows that the best-fit parameter set for all the models
considered indeed provides a good fit to the data. We plot
spectra for the best-fit models in Fig. 9. Apart from the high
value of NSM

� in model A (see the discussion at the end of
the next section), the best-fit parameters are within com-
monly adopted parameter ranges in the standard �CDM
model.

On the other hand, while reasonable parameters can be
found that yield a good global fit to the data for each of the
models, A, B1, B2, and B3, we will show that models with
fewer interacting neutrinos are preferred in a Bayesian
sense after marginalizing over all other cosmological pa-
rameters. The interpretation of these results is discussed
further below. We shall now discuss each model individu-
ally, focusing on the constraints on the neutrino properties.

A. Model A: NSM
� vs Nint

�

Figure 10 displays the curves for the marginalized like-
lihood of the parameters NSM

� and Nint
� . Notice that the

CMB alone allows a larger number of interacting neutri-
nos, while preferring a relatively low number of standard
neutrinos. The addition of the matter power spectra yields
the effect of reducing the maximum value of Nint

� , and also
shifts the peak of the likelihood for NSM

� . Referring to
Fig. 2, we notice that keeping the total number of neutrinos
fixed while increasing the number of interacting neutrinos
has a large impact on the CMB power spectrum, and a very
minor one on the matter power spectrum (the two models
have equal total energy density, but different neutrino
fluctuation evolution). However, the introduction of the
matter power spectrum constraint in the likelihood analysis
imposes limits on the epoch of equivalence, and on the
total spectral index. This, in turn, leaves less freedom for
accommodating nonstandard neutrino fluctuation evolu-
tion which affects the CMB power spectrum.

As anticipated in [14], the addition of the Lyman-�
constraint improves the limits on the standard model neu-
trinos. This is because, by probing the power of the fluc-
-8



FIG. 9 (color online). The CMB temperature (TT, upper left), polarization (EE, upper right) and cross (TE, lower left) power spectra,
and the matter power spectrum (lower right), for the best-fit models. In each case models can be found that fit all data well.
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tuations on very small scales, the Lyman-� data places a
strong constraint on the spectral index n [8], which is
degenerate with NSM

� and the reionization � in the radiation
power spectrum.

It is interesting to note that adding the CBI polarization
data also improves the constraints on NSM

� . This is because
an increased number of neutrinos significantly shifts the
peaks of the Cl, due to the delay in matter-radiation
equivalence. The CBI polarization data have been shown
to be able to determine the phase of the oscillations with
high precision [4], despite the size of the error bars. This is
one example of how such information can be used in
constraining parameters.

Table II summarizes the best-fit values and the 95%
confidence levels for the marginalized likelihoods for
063523
NSM
� and Nint

� , while Fig. 11 shows the degeneracy between
NSM
� and Nint

� in the case of the Cosmo data set. A higher
value for Nint

� may be compensated by a lower value for
NSM
� . However, once the matter power spectrum is used in

the analysis (and thus the redshift of equivalence is con-
strained) the degeneracy is mild.

It is clear from Figs. 10 and 11 that models with fewer
than three interacting neutrinos are favored in a Bayesian
sense. This does not contradict our previous statement that
cosmological parameter values can be found with Nint

� ’ 3
which provide a good global fit to the data considered (a
reduced 
2 statistically consistent with 1). It is worth
elaborating on the implications and interpretation of this
Bayesian limit and why no contradiction exists. First, the
likelihoods shown are after marginalizing over all other
-9



FIG. 10. The marginalized likelihood curves for Nint
� and NSM

�
in model A. The solid curves corresponds to the Cosmo data set
(CMB� 2dF� SdDS� HST) and the long-dashed curve to the
CMB data alone. The dotted and short-dashed curves correspond
to the addition of the Lyman-� and CBI polarization data,
respectively.

TABLE II. The best-fit values and 95% C.L. allowed ranges
for NSM

� and Nint
� in model A. The confidence limits are obtained

from marginalized curves.

NSM
� NSM

� Nint
� Nint

�

Data set best fit upper limit best fit upper limit

Cosmo 5.0 7.8 0.015 2.9
CosmoCBIpol 4.3 6.9 0.1 2.9
CosmoLy� 4.9 6.8 0.02 3.0
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parameters assuming flat priors in NSM
� , Nint

� , and all other
cosmological parameters. As such, the likelihood in Fig. 11
is not a straightforward measure of the goodness-of-fit of
models with given values of 	NSM

� ; Nint
� 
 but also of the

density of good-fitting models with the values 	NSM
� ; Nint

� 

in the hyperplane of parameter space defined by the re-
maining cosmological parameters—it technically quanti-
fies the cumulative relative likelihood of two populations
of models. We can certainly conclude, for instance, from
Fig. 11 that (with the aforementioned flat priors) the set of
data we have used prefers the population of models with
	NSM

� ; Nint
� 
 ’ 	3; 0
 relative to the population of models

with 	NSM
� ; Nint

� 
 ’ 	0; 3
 at more than 2 �. However, we
can not conclude from Fig. 11 that all models with
	NSM

� ; Nint
� 
 ’ 	0; 3
 are ruled out at more than 2 � by

current data.6 This conclusion can only be made if no
models with 	NSM

� ; Nint
� 
 ’ 	0; 3
 can be shown to be con-

sistent with the data, which, as we have discussed, is not
the case. Similarly, while we can conclude that the popu-
lation of models with 	NSM

� ; Nint
� 
 ’ 	3; 0
 are disfavored

compared to the population of models with 	NSM
� ; Nint

� 
 ’
	5; 0
 we cannot conclude that all models with 5 free-
FIG. 11 (color online). Upper: The contour level for the pa-
rameters NSM

� and Nint
� in model A. The two solid lines are 1- and

2-� contours; shades are from the mean likelihood, using the
Cosmo data set. Lower: The relative likelihood along the line
Nint
� � N

SM
� � 3.

6The notion of ‘‘more than 2 �’’ depends on the context. In
reference to the marginalized likelihood in a two dimensional
parameter plane it refers to a given point in this parameter plane
being outside the 95% confidence region. In reference to a
particular model with a given set of cosmological parameters
it refers to that model having a reduced 
2 more than 2 standard
deviations (of the 
2 distribution) away from 1.
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FIG. 13. Marginalized likelihood for the neutrino mass in the
‘‘neutrinoless universe’’ model, B3. The solid and dashed curves
correspond to the Cosmo and CosmoLy� data sets, respectively.
Note that we imposed a 2.2 eV cutoff for m�.
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FIG. 12. Marginalized likelihood for the neutrino mass in
model B1. The solid curve and dashed curve correspond to the
Cosmo and CosmoLy� data sets, respectively.
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streaming neutrinos provide a better global fit to the data
than all models with 3 free-streaming neutrinos. This is just
the nature of Bayesian inference—it attempts to quantify
the relative likelihood of models within a given paradigm,
but does not make an absolute judgment on the viability of
the paradigm itself (or in this case a particular subset of the
models within the paradigm). To make a judgment on the
viability of a given paradigm, a better approach is to ask the
question ‘‘Are there any models within this paradigm
which are consistent with the data?’’ If the answer to this
question is ‘‘yes’’ then that paradigm is still viable. In this
case, another way of summarizing the state of affairs is
that even if priors stipulating 	NSM

� ; Nint
� 
 ’ 	3; 0
 or

	NSM
� ; Nint

� 
 ’ 	0; 3
 are imposed to restrict our paradigm
to either the standard model of particle physics or an
alternative model with interacting neutrinos, then models
that are globally consistent with the data can still be found
(albeit fewer of them in the later case).

Finally, let us comment on parameter degeneracy.
Because the number of neutrinos contribute to setting the
redshift of equivalence, both NSM

� and Nint
� are degenerate

with �m and H0. It has been pointed out [13,14] that a
higher number of massless neutrinos can be compensated
by a higher H0. We find that even the marginalized like-
lihood for H0 in this model is around 80 km s�1 Mpc�1,
which is only 1 � away from the HST quoted best fit. In
this respect, our results are discrepant with those in [21],
where much larger values of H0 were obtained.

B. Model B: Annihilating neutrinos

In Fig. 12 we plot the marginalized likelihood for the
neutrino mass in model B1 (one interacting neutrino plus
two standard model neutrinos) using the Cosmo and
Cosmo� Lyman-� data sets (CosmoLy�). The curves
for B2 are similar to B1. In Fig. 13, we show the corre-
sponding likelihood for the case where all three neutrinos
annihilate (model B3). The best-fit values and the 95%
C.L. of the marginalized likelihoods are reported in
Table III, for the model in which either one, two, or three
neutrinos interact and annihilate. For models B1 and B2
the best fits are at m� ’ 0 eV. Note that our approximation
does not allow us to explore m� ’ 0 eV, as the assumption
that all three neutrino masses are equal breaks down when

m� &
�������������
�m2

atm

p
� 0:05 eV. For model B3 the best fit is

nonzero, and is discussed further below.
For the cases B1 and B2 where only one or two neutrino

species annihilate, the remaining neutrinos contribute to
the dark-matter density today. As expected, Lyman-� data
significantly tightens the neutrino mass limit in these mod-
els, because it sets a constraint on the overall normalization
and the shape of the power spectrum. This reduces the 95%
C.L. upper limit by quite a lot, bringing it to 0.24 eV for
one interactive neutrino (model B1) and 0.31 eV for two
interactive neutrinos (model B2). The addition of the CBI
polarization data does not improve the constraints on neu-
063523
trino mass with respect to those obtained with the Cosmo
data. This is because such low neutrino masses do not have
a significant impact on the CMB power spectrum (see
Fig. 7). As for degeneracies, the neutrino mass parameter
is degenerate with �m and �� and H0, all of which affect
the redshift of equivalence and therefore the amplitude
of the matter power spectrum at small scales. As a
consequence, m� is also degenerate with the amplitude of
-11
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FIG. 14 (color online). The confidence level contours for the
parameters �bh

2, Age, H0, and �8, vs m�, for model B3. The
solid lines are the 1- and 2-sigma contours, and shades are from
the mean likelihood, using the Cosmo data set. The panels on the
left have a 2.2 eV cutoff imposed on m�, while the panels on the
right have a 15 eV cutoff.

TABLE III. The limits on the neutrino mass, in the various
models. All values are in eV. For each model, the upper limit
refers to the 95% C.L. limit of the marginalized likelihood. For
m� < 0:1 eV, the approximation that all three neutrino masses
are degenerate is not satisfied. Note that for model B3, we
imposed a 2.2 eV cutoff, as implied by the tritium beta decay
neutrino mass limit.

B1 B1 B2 B2 B3 B3
Data set best fit limit best fit limit best fit limit

Cosmo <0:1 1.5 <0:1 0.42 2.2 2.2
CosmoLy� <0:1 0.24 <0:1 0.31 2.2 2.2
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the matter power spectrum �8. The mean of the marginal-
ized H0 likelihood plot is 68 km s�1 Mpc�1 and
71 km s�1 Mpc�1 for models B1 and B2, which are per-
fectly normal values.

The case B3 is different, because here all three neutrino
species annihilate, leaving no neutrino contribution to the
dark matter today. The effects on the power spectrum are
thus milder (see Fig. 8), and hence the limits on the
neutrino mass are expected to be significantly weaker. In
particular, the more massive the neutrino is, the earlier it
annihilates (see Fig. 5). If the neutrinos annihilate early
enough that all cosmologically interesting scales are out-
side the horizon, then models corresponding to different
masses only differ by a slightly different expansion history
very early on. Therefore, the data cannot distinguish be-
tween different high values of m�, as the corresponding
power spectra are very similar (see Figs. 8 and 14.)

However, for neutrino masses m� ’ 1 eV, the annihila-
tion takes place very close to the time of CMB decoupling.
It is during the annihilation period that the greatest devia-
tion of the sound speed and the equation of state occur (see
Fig. 6.) Hence for m� ’ 1 eV, the CMB spectrum is af-
fected by the modified values of w and c2

s , in addition, of
course, to the lack of free-streaming. This tends to disfavor
m� ’ 1 eV, with respect to both larger and smaller values
of m�, as shown in Fig. 13.

In addition, the neutrino mass in model B3 shows sig-
nificant degeneracies with the Age and H0, as changes in
these parameters compensate for the effect of increased
radiation density on the epoch of equivalence. The neutrino
mass is also degenerate with �bh2 and�8. We have plotted
these degeneracies in Fig. 14. To help explore the degen-
eracies, we have determined the marginalized likelihood
contours with and without imposing the 2.2 eV cutoff in
m�. We can see from Fig. 14 that although a slightly better
fit is obtained for larger m�	5–10 eV
, this would imply an
unacceptably low Age [47], an unacceptably high H0, and
also a value of �8 * 1, which is disfavored by recent
cluster number counts [48] and lensing analysis [49].
(The baryon abundance, however, more closely matches
the BBN determination, �bh

2 � 0:022 0:002 [11], for
larger values of m�.) Imposing the 2.2 eV cutoff for m� (as
063523
required to be consistent with the tritium beta decay neu-
trino mass limit) brings these parameters back to more
reasonable values. However, even in the 0–2.2 eV region,
the values of these parameters seem somewhat discrepant.
For example, the best-fit point (atm� � 2:2 eV) has values
of �bh2, Age, and H0 which all deviate from the central
values preferred by BBN, globular cluster, and HST mea-
surements, respectively, by about one sigma.

C. Discussion

The results above should be compared with the ones
obtained by other authors in the standard case of three
massive, noninteracting neutrinos. The WMAP team found
m� � 0:23 eV at 95% C.L. [50], using CMB data and the
-12
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2dF power spectrum, plus an assumption on the power
spectrum bias which drives most of the result [51,52].
The addition of quite tight constraints from the SDSS
power spectrum leads to an upper limit on the sum of the
three masses of

P
m� � 0:42 eV at 95% C.L. [53]. The

recent results from the Boomerang team are m� < 1 eV at
95% C.L. from CMB data alone, and m� < 0:4 eV when
the matter power spectrum data are considered, with no
bias assumptions [54]. Perhaps the most directly compa-
rable value is the one obtained by [55],

P
m� � 0:33

0:27 eV, with the same Lyman-� sample and comparable
assumptions about the parameters as in our analysis. These
results are broadly similar to what we find for the cases B1
and B2, in which one or two standard model neutrinos
remain. As a general result, we can conclude that the
neutrino mass is expected to be below about 0.5 eV in
those cases, and is not significantly affected by the pres-
ence of the tightly coupled component of the relativistic
energy density. However, the neutrinoless model (B3) is
different, and leads to much weaker m� constraints, albeit
at the expense of somewhat discrepant values for �bh2,
Age, and H0.

Finally, we comment on the implications of these results
for neutrino decay. One consequence of strong ���
interactions is that neutrinos may be unstable. For the
range of couplings considered here, g * 10�5, the neutri-
nos could decay over astronomical distances, which is
testable in neutrino telescope experiments [38]. For small
masses, the cosmological consequences of these couplings
are represented by model A, while for larger masses they
are represented by either model B2 or B3 (depending on
whether one or two neutrino species are unstable.)

Reference [56] claims stringent limits on the couplings
gij, and thus on neutrino lifetimes, based upon the fact that
Refs. [21,22] find some evidence for neutrino free-
streaming in the CMB. However, [21,22] analyzed only a
scenario in which all three neutrinos behave in the same
way, and thus certainly cannot be used to claim that all
three neutrino species must be free-streaming.7

Given the results here, we conclude that current cosmo-
logical data do not impose limits on either the individual
couplings, gij, or upon neutrino lifetimes.
VI. CONCLUSIONS

We have investigated the distinction between a free-
streaming or interacting fluid of neutrinos, and explored
the constraints on these neutrinos imposed by cosmology.
Although some of our results are applicable in a wider
7Neutrino decay requires only some subset of the couplings to
be large (e.g. g21 allows for the decay �2 ! �1 ��) implying
that only a subset of the neutrinos, �i, need be interacting.
Without demonstrating that all the couplings gij must simulta-
neously be small, it is not possible to set stringent cosmological
limits on any particular individual element of gij.

063523
context, we have used an example involving additional
couplings between the neutrinos and a light boson. Our
main conclusion is that models with interacting neutrinos
remain viable, contrary to the claim in Refs. [21,56].

As a general result, we find that both CMB polarization
data and Lyman-� data help to constrain the number of
standard model neutrino species. The inclusion of
Lyman-� data also helps improve the constraints on neu-
trino mass. With the data considered, we have found upper
limits on the neutrino mass, but no detection of a nonzero
neutrino mass.

Two parametrizations of the interacting-neutrino models
have been examined:
(1) I
-13
n the first, we allowed for an arbitrary number of
free-streaming (standard model) neutrinos, NSM

� ,
and tightly coupled (interacting) neutrinos, Nint

� .
Within the context of the neutrino-scalar model,
this corresponds to the limit m� ! 0 and m� ! 0.
We have found that within the 	NSM

� ; Nint
� 
 plane, the

data favor free-streaming neutrinos over tightly
coupled neutrinos in a Bayesian analysis. How-
ever, we find even if the prior NSM

� ’ 0 is imposed
(so that all neutrinos are interacting) models can be
found that are a good global fit to the data consid-
ered, without resorting to extreme values for the
cosmological parameters. In this respect, models
with interacting neutrinos remain viable. We em-
phasize that the constraints obtained here are very
general, as NSM

� and Nint
� can parametrize any free-

streaming or tightly coupled relativistic degrees of
freedom, which need not consist of neutrinos.
(2) O
ur second parametrization consists of models with
nonzero m�. We fixed the total number of neutrinos
to three, and allowed either one, two, or all three to
interact with a massless boson. In this scenario, the
interacting neutrinos annihilate to bosons when T �
m�, thus removing them from the plasma. In the
case where either one or two neutrino species inter-
act/annihilate, we find that the upper limits on neu-
trino mass are broadly similar to those for the
standard scenario. However, if all three neutrino
species annihilate to leave a ‘‘neutrinoless uni-
verse,’’ the neutrino mass limits are significantly
weaker. In this case, values of m� comparable to
the tritium beta decay limit of 2.2 eV are permitted,
although a low Age and a highH0 tend to somewhat
disfavor the scenario.
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APPENDIX: NEUTRINO-SCALAR FLUID
PROPERTIES

Here we summarize a few basic relationships for Fermi-
Dirac and Bose-Einstein statistics and derive from them the
quantities w, cs, and Nint

� used in Eqs. (2)–(4) to evolve the
perturbation dynamics and shown in Figs. 5 and 6. We note
that these quantities may also be found by solving the
continuity equations for energy and entropy density nu-
merically, but we believe the analytical forms we present
here are physically illustrative and may be useful in other
contexts.

The number density ni, energy density �i, and pressure
Pi of a fermionic ( � 1) or bosonic ( � �1) species i of
mass mi with gi internal degrees of freedom in thermal
equilibrium can be written as

ni �
gi
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where E �
������������������
p2 �m2

i

q
, x � mi=T, K� are modified Bessel

functions of the second kind, �	3
 � 1:202 056 9 is the
Riemann zeta function of three, and the arrows indicate
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the high-temperature limit x! 0. Notice that the standard
result for massless particles Pi � �i=3 is recovered in this
limit. These results can be straightforwardly derived by
expanding the distribution function as a geometric series of
Boltzmann factors. This form is useful for tabulating the
density and pressure as theK� can be rapidly evaluated and
the sum converges quickly and can be truncated to the
desired accuracy—keeping only the leading term is the
Maxwell-Boltzmann approximation to the distribution
function.

Specializing to the fermionic case ( � 1) we write the
energy density and pressure of a single fermionic degree of
freedom as

�f �
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where 
�=P ! 1 for x! 0 but are <1 for finite x. We also
find it useful to define
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where similarly 
d�=dP ! 1 for x! 0.
Let us now consider, as we do in this paper, a thermal-

ized fluid at temperature T�� consisting of N massive
neutrinos coupled to a single massless scalar degree of
freedom �.

The total energy density and pressure of this fluid are

� � �� � �� �
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30
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and

P � P� � P� �
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90
T4
�� � 2N

7

8

	2

90

P	x�
T

4
��; (A9)
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where the factor of 2 in the neutrino terms accounts for
antineutrinos and x� � m�=T��.

We can now write the equation of state w � P=� in
terms of 
� and 
P as

w �
1

3

�
4=7� N
P	x�

4=7� N
�	x�


�
: (A10)

Similarly, we can write the sound speed c2
s � dP=d� in

terms of 
d� and 
dP as

c2
s �

1

3

�
4=7� N
dP	x�

4=7� N
d�	x�


�
: (A11)

The form of Eqs. (A10) and (A11) explains the behavior
shown in Fig. 6. For T�� � m� we have 
! 1 and both w
and c2

s approach 1=3. For T�� � m� we have 
! 0 and
again w and c2

s approach 1=3. It is only during the annihi-
lation of the neutrinos (T�� �m�) that the values of w and
c2
s deviate from those for a relativistic fluid. Larger values

for N result in larger deviations.
We now derive an expression for the temperature of the

neutrino-scalar fluid T�� as a function of time (measured
with T�). In the standard case the neutrino temperature just
falls as TSM

� � 	4=11
1=3T� / a. It is convenient to mea-
063523
sure T�� relative to this standard case and define the ratio
R�� � T��=T

SM
� . For the times of interest the weak inter-

actions have decoupled already and the comoving entropy
density S � a3	�� P
=T�� of the neutrino-scalar fluid is
constant. The constancy of S implies that

R �� �

�
4=7� N

4=7� N�	3=4

�	x�
 � 	1=4

P	x�
�

�
1=3
;

(A12)

which, recalling that x� � m�=	R��TSM
� 
, is a transcen-

dental equation which implicitly determines R�� as a
function of TSM

� .
Now if we write the energy density in terms of an

effective number of standard model neutrinos

� � Nint
�

7

8

	2

15
	TSM
� 


4 (A13)

we find, comparing with Eq. (A8), that

Nint
� � �

4
7� N
�	x�
�R

4
�� !

4
7�1�

7
4N�

4=3; (A14)

where the last limit holds for T�� � m� (after annihilation
is complete). In accordance with Fig. 5 we find that Nint

� !
	2:20; 4:25; 6:58
 for N � 	1; 2; 3
, respectively.
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