39 research outputs found

    Study of 19^{19} Na at SPIRAL

    Get PDF
    NESTERInternational audienceThe excitation function for the elastic-scattering reaction p18Ne, p18Ne was measured with the first radioactive beam from the SPIRAL facility at the GANIL laboratory and with a solid cryogenic hydrogen target. Several broad resonances have been observed, corresponding to new excited states in the unbound nucleus 19Na. In addition, two-proton emission events have been identified and are discussed

    New approach to the nuclear in beam Îł\gamma spectroscopy of neutron rich nuclei at N=20 using projectile fragmentation

    Get PDF
    In the european political field, the challenge consists in organizing a political debate on the scale of the Union whereas the citizens of this one do not speak the same language, ignore the Community institutions, live in different institutional systems and, during nearly 50 years, lived Wall on both sides, in opposite ideological universes. Television can help to take up this challenge in condition of being put in perspective in its right place: neither obsolete and diabolic object manipulating the masses, nor democratic fairy bringing the rational light to the individual

    Where less may be more: how the rare biosphere pulls ecosystems strings

    Get PDF
    Rare species are increasingly recognized as crucial, yet vulnerable components of Earth’s ecosystems. This is also true for microbial communities, which are typically composed of a high number of relatively rare species. Recent studies have demonstrated that rare species can have an over-proportional role in biogeochemical cycles and may be a hidden driver of microbiome function. In this review, we provide an ecological overview of the rare microbial biosphere, including causes of rarity and the impacts of rare species on ecosystem functioning. We discuss how rare species can have a preponderant role for local biodiversity and species turnover with rarity potentially bound to phylogenetically conserved features. Rare microbes may therefore be overlooked keystone species regulating the functioning of host-associated, terrestrial and aquatic environments. We conclude this review with recommendations to guide scientists interested in investigating this rapidly emerging research area

    About samples, giving examples: Optimized Single Molecule Localization Microscopy

    No full text
    International audienceSuper-resolution microscopy has profoundly transformed how we study the architecture of cells, revealing unknown structures and refining our view of cellular assemblies. Among the various techniques, the resolution of Single Molecule Localization Microscopy (SMLM) can reach the size of macromolecular complexes and offer key insights on their nanoscale arrangement in situ. SMLM is thus a demanding technique and taking advantage of its full potential requires specifically optimized procedures. Here we describe how we perform the successive steps of an SMLM workflow, focusing on single-color Stochastic Optical Reconstruction Microscopy (STORM) as well as multicolor DNA Points Accumulation for imaging in Nanoscale Topography (DNA-PAINT) of fixed samples. We provide detailed procedures for careful sample fixation and immunostaining of typical cellular structures: cytoskeleton, clathrin-coated pits, and organelles. We then offer guidelines for optimal imaging and processing of SMLM data in order to optimize reconstruction quality and avoid the generation of artifacts. We hope that the tips and tricks we discovered over the years and detail here will be useful for researchers looking to make the best possible SMLM images, a prerequisite for meaningful biological discovery

    Ultrastructure of the axonal periodic scaffold reveals a braid-like organization of actin rings

    No full text
    International audienceRecent super-resolution microscopy studies have unveiled a periodic scaffold of actin rings regularly spaced by spectrins under the plasma membrane of axons. However, ultrastructural details are unknown, limiting a molecular and mechanistic understanding of these enigmatic structures. Here, we combine platinum-replica electron and optical super-resolution micro-scopy to investigate the cortical cytoskeleton of axons at the ultrastructural level. Immunogold labeling and correlative super-resolution/electron microscopy allow us to unambiguously resolve actin rings as braids made of two long, intertwined actin filaments connected by a dense mesh of aligned spectrins. This molecular arrangement contrasts with the currently assumed model of actin rings made of short, capped actin filaments. Along the proximal axon, we resolved the presence of phospho-myosin light chain and the scaffold connection with microtubules via ankyrin G. We propose that braided rings explain the observed stability of the actin-spectrin scaffold and ultimately participate in preserving the axon integrity

    Interplay between angular momentum transfer and nuclear structure in the production of isomers at intermediate energies

    No full text
    Isomeric ratios and momentum distributions of nuclei produced in the fragmentation of a 60A MeV 92Mo beam on a thin 27Al target have been studied in detail. A strong dependence of the isomeric ratio on the structure of the isomer and on the reaction mechanism has been observed for the first time at intermediate energies. The results are quantitatively reproduced in a framework of kinematical and statistical models of nuclear reactions

    Nutrient sources differ in the fertilised eggs of two divergent broiler lines selected for meat ultimate pH

    No full text
    International audienceThe pHu+ and pHu− lines, which were selected based on the ultimate pH (pHu) of the breast muscle, represent a unique model to study the genetic and physiological controls of muscle energy store in relation with meat quality in chicken. Indeed, pHu+ and pHu− chicks show differences in protein and energy metabolism soon after hatching, associated with a different ability to use energy sources in the muscle. The present study aimed to assess the extent to which the nutritional environment of the embryo might contribute to the metabolic differences observed between the two lines at hatching. Just before incubation (E0), the egg yolk of pHu+ exhibited a higher lipid percentage compared to the pHu− line (32.9% vs. 27.7%). Although 1 H-NMR spectroscopy showed clear changes in egg yolk composition between E0 and E10, there was no line effect. In contrast, 1 H-NMR analysis performed on amniotic fluid at embryonic day 10 (E10) clearly discriminated the two lines. The amniotic fluid of pHu+ was richer in leucine, isoleucine, 2-oxoisocaproate, citrate and glucose, while choline and inosine were more abundant in the pHu− line. Our results highlight quantitative and qualitative differences in metabolites and nutrients potentially available to developing embryos, which could contribute to metabolic and developmental differences observed after hatching between the pHu+ and pHu− lines
    corecore