155 research outputs found

    Climate change modulates the stratospheric volcanic sulfate aerosol lifecycle and radiative forcing from tropical eruptions.

    Get PDF
    Explosive volcanic eruptions affect climate, but how climate change affects the stratospheric volcanic sulfate aerosol lifecycle and radiative forcing remains unexplored. We combine an eruptive column model with an aerosol-climate model to show that the stratospheric aerosol optical depth perturbation from frequent moderate-magnitude tropical eruptions (e.g. Nabro 2011) will be reduced by 75% in a high-end warming scenario compared to today, a consequence of future tropopause height rise and unchanged eruptive column height. In contrast, global-mean radiative forcing, stratospheric warming and surface cooling from infrequent large-magnitude tropical eruptions (e.g. Mt. Pinatubo 1991) will be exacerbated by 30%, 52 and 15% in the future, respectively. These changes are driven by an aerosol size decrease, mainly caused by the acceleration of the Brewer-Dobson circulation, and an increase in eruptive column height. Quantifying changes in both eruptive column dynamics and aerosol lifecycle is therefore key to assessing the climate response to future eruptions

    Uncertainty handling during nuclear accidents.

    Get PDF
    In the years following Chernobyl, many reports and projects reflected on how to improve emergency management processes in dealing with an accidental offsite release of radiation at a nuclear facility. A common observation was the need to address the inevitable uncertainties. Various suggestions were made and some of these were researched in some depth. The Fukushima Daiichi Disaster has led to further reflections. However, many of the uncertainties inherent in responding to a threatened or actual release remain unaddressed in the analyses and model runs that are conducted to support the emergency managers in their decision making. They are often left to factor in allowances for the uncertainty through informal discussion and unsupported judgement, and the full range of sources of uncertainty may not be addressed. In this paper, we summarise the issues and report on a project which has investigated the handling of uncertainty in the UK’s national crisis cell. We suggest the R&D programmes needed to provide emergency managers with better guidance on uncertainty and how it may affect the consequences of taking different countermeasures

    Communicating geographical risks in crisis management: The need for research

    Get PDF
    In any crisis, there is a great deal of uncertainty, often geographical uncertainty or, more precisely, spatio-temporal uncertainty. Examples include the spread of contamination from an industrial accident, drifting volcanic ash, and the path of a hurricane. Estimating spatio-temporal probabilities is usually a difficult task, but that is not our primary concern. Rather, we ask how analysts can communicate spatio-temporal uncertainty to those handling the crisis. We comment on the somewhat limited literature on the representation of spatial uncertainty on maps. We note that many cognitive issues arise and that the potential for confusion is high. We note that in the early stages of handling a crisis the uncertainties involved may be deep, i.e. difficult or impossible to quantify in the time available. In such circumstance, we suggest the idea of presenting multiple scenarios

    Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals

    Get PDF
    Current mitigation efforts and existing future commitments are inadequate to accomplish the Paris Agreement temperature goals. In light of this, research and debate are intensifying on the possibilities of additionally employing proposed climate geoengineering technologies, either through atmospheric carbon dioxide removal or farther-reaching interventions altering the Earth’s radiative energy budget. Although research indicates that several techniques may eventually have the physical potential to contribute to limiting climate change, all are in early stages of development, involve substantial uncertainties and risks, and raise ethical and governance dilemmas. Based on present knowledge, climate geoengineering techniques cannot be relied on to significantly contribute to meeting the Paris Agreement temperature goals
    corecore