31 research outputs found

    Amplifying actions for food system transformation: Insights from the Stockholm region

    Get PDF
    Food is essential to people and is one of the main ways in which people are connected to the world’s ecosystems. However, food systems often cause ecosystem degradation and produce ill-health, which has generated increasing calls to transform food systems to be more sustainable. The Swedish food system is currently undergoing substantial change. A varied set of local actors have created alternative sustainability initiatives that enact new ways of doing, thinking, and organizing. These actors can increase the transformative impact of their initiatives through multiple actions and a variety of amplification processes. We analyzed the actions adopted by 29 food initiatives active in the Stockholm region using information available online. We conducted 11 interviews to better understand the amplification processes of speeding up (i.e., accelerating impact), scaling up (i.e., influencing higher institutional levels), and scaling deep (i.e., changing values and mind-sets). Our results indicated that the initiatives mainly seek to stabilize and grow their impact while changing the awareness, values, and mind-sets of people concerning the food they consume (scaling deep). However, these approaches raise new questions about whether these actions subvert or reinforce current unsustainable and inequitable system dynamics. We suggest there are distinct steps that local and regional governments could take to support these local actors via collaborations with coordinated forms of initiatives, and fostering changes at the municipality level, but these steps require ongoing, adaptive approaches given the highly complex nature of transformative change and the risks of reinforcing current system dynamics

    CALIFA, the Calar Alto Legacy Integral Field Area survey: III. Second public data release

    Get PDF
    García-Benito, R. et. al.© ESO, 2015. This paper describes the Second Public Data Release (DR2) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. The data for 200 objects are made public, including the 100 galaxies of the First Public Data Release (DR1). Data were obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5 m telescope at the Calar Alto observatory. Two different spectral setups are available for each galaxy, (i) a low-resolution V500 setup covering the wavelength range 3745-7500 Å with a spectral resolution of 6.0 Å (FWHM); and (ii) a medium-resolution V1200 setup covering the wavelength range 3650-4840 Å with a spectral resolution of 2.3 Å (FWHM). The sample covers a redshift range between 0.005 and 0.03, with a wide range of properties in the color-magnitude diagram, stellar mass, ionization conditions, and morphological types. All the cubes in the data release were reduced with the latest pipeline, which includes improvedspectrophotometric calibration, spatial registration, and spatial resolution. The spectrophotometric calibration is better than 6% and the median spatial resolution is 2.4. In total, the second data release contains over 1.5 million spectra.R.G.B., R.G.D., and E.P. are supported by the Spanish Ministerio de Ciencia e Innovacion under grant AYA2010-15081. S.Z. is supported by the EU Marie Curie Integration Grant >SteMaGE> Nr. PCIG12-GA-2012-326466 (Call Identifier: FP7-PEOPLE-2012 CIG). J.F.B. acknowledges support from grants AYA2010-21322-C03-02 and AIB-2010-DE-00227 from the Spanish Ministry of Economy and Competitiveness (MINECO), as well as from the FP7 Marie Curie Actions of the European Commission, via the Initial Training Network DAGAL under REA grant agreement number 289313. Support for L.G. is provided by the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC12009, awarded to The Millennium Institute of Astrophysics, M.A.S.L.G. also acknowledges support by CONICYT through FONDECYT grant 3140566. A.G. acknowledges support from the FP7/2007-2013 under grant agreement n. 267251 (AstroFIt). J.M.G. acknowledges support from the Fundacao para a Ciencia e a Tecnologia (FCT) through the Fellowship SFRH/BPD/66958/2009 from FCT (Portugal) and research grant PTDC/FIS-AST/3214/2012. RAM was funded by the Spanish programme of International Campus of Excellence Moncloa (CEI). J.M.A. acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild). I.M., J.M. and A.d.O. acknowledge the support by the projects AYA2010-15196 from the Spanish Ministerio de Ciencia e Innovacion and TIC 114 and PO08-TIC-3531 from Junta de Andalucia. AMI acknowledges support from Agence Nationale de la Recherche through the STILISM project (ANR-12-BS05-0016-02). M.M. acknowledges financial support from AYA2010-21887-C04-02 from the Ministerio de Economia y Competitividad. P.P. is supported by an FCT Investigador 2013 Contract, funded by FCT/MCTES (Portugal) and POPH/FSE (EC). P.P. acknowledges support by FCT under project FCOMP-01-0124-FEDER-029170 (Reference FCT PTDC/FIS-AST/3214/2012), funded by FCT-MEC (PIDDAC) and FEDER (COMPETE). T.R.L. thanks the support of the Spanish Ministerio de Educacion, Cultura y Deporte by means of the FPU fellowship. PSB acknowledges support from the Ramon y Cajal program, grant ATA2010-21322-C03-02 from the Spanish Ministry of Economy and Competitiveness (MINECO). C.J.W. acknowledges support through the Marie Curie Career Integration Grant 303912. V.W. acknowledges support from the European Research Council Starting Grant (SEDMorph P.I. V. Wild) and European Career Re-integration Grant (Phiz-Ev P.I.V. Wild). Y.A. acknowledges financial support from the Ramon y Cajal programme (RyC-2011-09461) and project AYA2013-47742-C4-3-P, both managed by the Ministerio de Economia y Competitividad, as well as the >Study of Emission-Line Galaxies with Integral-Field Spectroscopy> (SELGIFS) programme, funded by the EU (FP7-PEOPLE-2013-IRSES-612701) within the Marie-Sklodowska-Curie Actions schemePeer Reviewe

    The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden’s Star

    Get PDF
    Context.Teegarden’s Star is the brightest and one of the nearest ultra-cool dwarfs in the solar neighbourhood. For its late spectral type (M7.0 V),the star shows relatively little activity and is a prime target for near-infrared radial velocity surveys such as CARMENES.Aims.As part of the CARMENES search for exoplanets around M dwarfs, we obtained more than 200 radial-velocity measurements of Teegarden’sStar and analysed them for planetary signals.Methods.We find periodic variability in the radial velocities of Teegarden’s Star. We also studied photometric measurements to rule out stellarbrightness variations mimicking planetary signals.Results.We find evidence for two planet candidates, each with 1.1M⊕minimum mass, orbiting at periods of 4.91 and 11.4 d, respectively. Noevidence for planetary transits could be found in archival and follow-up photometry. Small photometric variability is suggestive of slow rotationand old age.Conclusions.The two planets are among the lowest-mass planets discovered so far, and they are the first Earth-mass planets around an ultra-cooldwarf for which the masses have been determined using radial velocities.We thank the referee Rodrigo Díaz for a careful review andhelpful comments. M.Z. acknowledges support from the Deutsche Forschungs-gemeinschaft under DFG RE 1664/12-1 and Research Unit FOR2544 “BluePlanets around Red Stars”, project no. RE 1664/14-1. CARMENES isan instrument for the Centro Astronómico Hispano-Alemán de Calar Alto(CAHA, Almería, Spain). CARMENES is funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de InvestigacionesCientíficas (CSIC), the European Union through FEDER/ERF FICTS-2011-02 funds, and the members of the CARMENES Consortium (Max-Planck-Institut für Astronomie, Instituto de Astrofísica de Andalucía, LandessternwarteKönigstuhl, Institut de Ciències de l’Espai, Institut für Astrophysik Göttingen,Universidad Complutense de Madrid, Thüringer Landessternwarte Tautenburg,Instituto de Astrofísica de Canarias, Hamburger Sternwarte, Centro de Astro-biología and Centro Astronómico Hispano-Alemán), with additional contribu-tions by the Spanish Ministry of Economy, the German Science Foundationthrough the Major Research Instrumentation Programme and DFG ResearchUnit FOR2544 “Blue Planets around Red Stars”, the Klaus Tschira Stiftung, thestates of Baden-Württemberg and Niedersachsen, and by the Junta de Andalucía.Based on data from the CARMENES data archive at CAB (INTA-CSIC). Thisarticle is based on observations made with the MuSCAT2 instrument, devel-oped by ABC, at Telescopio Carlos Sánchez operated on the island of Tener-ife by the IAC in the Spanish Observatorio del Teide. Data were partly col-lected with the 150-cm and 90-cm telescopes at the Sierra Nevada Observa-tory (SNO) operated by the Instituto de Astrofísica de Andalucía (IAA-CSIC).Data were partly obtained with the MONET/South telescope of the MOnitoringNEtwork of Telescopes, funded by the Alfried Krupp von Bohlen und HalbachFoundation, Essen, and operated by the Georg-August-Universität Göttingen,the McDonald Observatory of the University of Texas at Austin, and the SouthAfrican Astronomical Observatory. We acknowledge financial support from theSpanish Agencia Estatal de Investigación of the Ministerio de Ciencia, Inno-vación y Universidades and the European FEDER/ERF funds through projectsAYA2015-69350-C3-2-P, AYA2016-79425-C3-1/2/3-P, AYA2018-84089, BES-2017-080769, BES-2017-082610, ESP2015-65712-C5-5-R, ESP2016-80435-C2-1/2-R, ESP2017-87143-R, ESP2017-87676-2-2, ESP2017-87676-C5-1/2/5-R, FPU15/01476, RYC-2012-09913, the Centre of Excellence ”Severo Ochoa”and ”María de Maeztu” awards to the Instituto de Astrofísica de Canarias (SEV-2015-0548), Instituto de Astrofísica de Andalucía (SEV-2017-0709), and Cen-tro de Astrobiología (MDM-2017-0737), the Generalitat de Catalunya throughCERCA programme”, the Deutsches Zentrum für Luft- und Raumfahrt throughgrants 50OW0204 and 50OO1501, the European Research Council through grant694513, the Italian Ministero dell’instruzione, dell’università de della ricerca andUniversità degli Studi di Roma Tor Vergata through FFABR 2017 and “Mis-sion: Sustainability 2016”, the UK Science and Technology Facilities Council through grant ST/P000592/1, the Israel Science Foundation through grant848/16, the Chilean CONICYT-FONDECYT through grant 3180405, the Mexi-can CONACYT through grant CVU 448248, the JSPS KAKENHI through grantsJP18H01265 and 18H05439, and the JST PRESTO through grant JPMJPR1775

    Determinants and functions of CAFs secretome during cancer progression and therapy

    Get PDF
    Multiple lines of evidence are indicating that cancer development and malignant progression are not exclusively epithelial cancer cell-autonomous processes but may also depend on crosstalk with the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are abundantly represented in the TME and are continuously interacting with cancer cells. CAFs are regulating key mechanisms during progression to metastasis and response to treatment by enhancing cancer cells survival and aggressiveness. The latest advances in CAFs biology are pointing to CAFs-secreted factors as druggable targets and companion tools for cancer diagnosis and prognosis. Especially, extensive research conducted in the recent years has underscored the potential of several cytokines as actionable biomarkers that are currently evaluated in the clinical setting. In this review, we explore the current understanding of CAFs secretome determinants and functions to discuss their clinical implication in oncology

    Amplifying actions for food system transformation: Insights from the Stockholm region

    No full text
    Food is essential to people and is one of the main ways in which people are connected to the world’s ecosystems. However, food systems often cause ecosystem degradation and produce ill-health, which has generated increasing calls to transform food systems to be more sustainable. The Swedish food system is currently undergoing substantial change. A varied set of local actors have created alternative sustainability initiatives that enact new ways of doing, thinking, and organizing. These actors can increase the transformative impact of their initiatives through multiple actions and a variety of amplification processes. We analyzed the actions adopted by 29 food initiatives active in the Stockholm region using information available online. We conducted 11 interviews to better understand the amplification processes of speeding up (i.e., accelerating impact), scaling up (i.e., influencing higher institutional levels), and scaling deep (i.e., changing values and mind-sets). Our results indicated that the initiatives mainly seek to stabilize and grow their impact while changing the awareness, values, and mind-sets of people concerning the food they consume (scaling deep). However, these approaches raise new questions about whether these actions subvert or reinforce current unsustainable and inequitable system dynamics. We suggest there are distinct steps that local and regional governments could take to support these local actors via collaborations with coordinated forms of initiatives, and fostering changes at the municipality level, but these steps require ongoing, adaptive approaches given the highly complex nature of transformative change and the risks of reinforcing current system dynamics

    Seeds of good anthropocenes: developing sustainability scenarios for Northern Europe

    Get PDF
    Scenario development helps people think about a broad variety of possible futures; however, the global environmental change community has thus far developed few positive scenarios for the future of the planet and humanity. Those that have been developed tend to focus on the role of a few common, large-scale external drivers, such as technology or environmental policy, even though pathways of positive change are often driven by surprising or bottom-up initiatives that most scenarios assume are unchanging. We describe an approach, pioneered in Southern Africa and tested here in a new context in Northern Europe, to developing scenarios using existing bottom-up transformative initiatives to examine plausible transitions towards positive, sustainable futures. By starting from existing, but marginal initiatives, as well as current trends, we were able to identify system characteristics that may play a key role in sustainability transitions (e.g., gender issues, inequity, governance, behavioral change) that are currently under-explored in global environmental scenarios. We suggest that this approach could be applied in other places to experiment further with the methodology and its potential applications, and to explore what transitions to desirables futures might be like in different places
    corecore