1,790 research outputs found

    Assessing the volcanic hazard for Rome. 40Ar/39Ar and In-SAR constraints on the most recent eruptive activity and present-day uplift at Colli Albani Volcanic District

    Get PDF
    We present new 40Ar/39Ar data which allow us to refine the recurrence time for the most recent eruptive activity occurred at Colli Albani Volcanic District (CAVD) and constrain its geographic area. Time elapsed since the last eruption (36 kyr) overruns the recurrence time (31 kyr) in the last 100 kyr. New interferometric synthetic aperture radar data, covering the years 1993–2010, reveal ongoing inflation with maximum uplift rates (>2 mm/yr) in the area hosting the most recent (<200 ka) vents, suggesting that the observed uplift might be caused by magma injection within the youngest plumbing system. Finally, we frame the present deformation within the structural pattern of the area of Rome, characterized by 50 m of regional uplift since 200 ka and by geologic evidence for a recent (<2000 years) switch of the local stress-field, highlighting that the precursors of a new phase of volcanic activity are likely occurring at the CAVD

    Multi-Cyclic and Isotopically Diverse Silicic Magma Generation in an Arc Volcano: Gorely Eruptive Center, Kamchatka, Russia

    Get PDF
    The Kamchatka Peninsula is home to some of the most frequent and prolific subduction-related volcanic activity in the world, with the largest number of caldera-forming eruptions per length of the volcanic arc. Among those, Gorely volcano has a topographically prominent Late Pleistocene caldera (13 km × 12 km, estimated to have produced >100 km3 of magma), which is now almost completely filled by a central cone. We report new 40Ar/39Ar ages and geochemical and isotopic data for newly recognized Mid-Pleistocene ignimbrite units of large but unknown volume sourced from the Gorely eruptive center, most of which were deposited in marginal glacial conditions. These ignimbrites have crystallinities of 9-24% and most are quartz-, amphibole-, and zircon-undersaturated. Additionally, we studied 32 eruptive units, including stratigraphically constrained Holocene tephra, and pre- and post-caldera lava sequences, to understand the petrogenetic and temporal evolution of this long-lived, multi-cyclic, arc volcano. Material erupted prior to the formation of the modern Gorely edifice, including the voluminous ignimbrites and eruptions of the ‘pra-Gorely' stage, consist primarily of dacite and andesite, whereas sequences of the modern Gorely edifice are represented by basalt to basaltic andesite. MELTS and EC-AFC modeling shows that it is possible to obtain silicic compositions near those of the evolved ignimbrite compositions through 60-75% fractional crystallization at 1 kbar and nickel-nickel oxide (NNO) oxygen fugacity. However, our newly compiled major and trace element data for Gorely yield two separate bimodal peaks in a SiO2-frequency diagram, showing a prominent Daly Gap, with a deficiency in andesite. Trace element concentrations define two separate trends, one for more silicic and another for more mafic sequences. Additionally, δ18Omelt values reconstructed from coexisting plagioclase and clinopyroxene phenocrysts range from a low value of 4·85‰ to a normal value of 6·22‰. The low δ18O values range throughout the known lifespan of Gorely, with the lowest value being from the first known ignimbrite to erupt, indicating episodic but temporally decreasing crustal assimilation of previously hydrothermally altered material. 87Sr/86Sr and 143Nd/144Nd ratios show wide ranges from 0·70328 to 0·70351 and from 0·51303 to 0·51309 respectively, also suggesting incorporation of surrounding crust, although there are less clear trends throughout the lifespan of Gorely. The combination of light and diverse δ18O values with elevated 87Sr/86Sr and low 143Nd/144Nd ratios suggests contamination by older and isotopically diverse, low-δ18O country-rocks, such as the neighboring 11 Ma Akhomten granitic massif, which shows ranges in δ18O, 87Sr/86Sr, and 144Nd/143Nd values overlapping with the Gorely magmas. In addition, the presence of glomerocrysts and mafic enclaves in the majority of Gorely dacites indicates a period of crystal settling and subsequent intrusion of hot, primitive basalt that probably triggered eruption. Finally, elevated Nb concentrations relative to other Kamchatkan volcanoes suggest that Gorely magmas may involve an enriched component, probably caused by delamination of a lower crustal root. Our results argue for an incremental view of silicic magma generation at so-called ‘long-term eruptive centers', in Kamchatka and worldwide, consisting of alternating episodes of magmatic and hydrothermal activity, and glacial advances and retreats. We demonstrate that large-volume, isotopically distinct, silicic magma can be generated rapidly between cone-building phases of volcanic activity through a combination of fractional crystallization, assimilation of older country rocks, and shallow assimilation of hydrothermally altered but otherwise petrochemically similar older intracaldera tuffs and intrusions. These transient shallow silicic magma chambers empty nearly completely in ignimbrite-forming eruptions after 103-105 years of assembly, partially triggered by glacial surface dynamic

    Multi-cyclic and isotopically diverse silicic magma generation in an arc volcano : Gorely Eruptive Center, Kamchatka, Russia

    Get PDF
    The Kamchatka Peninsula is home to some of the most frequent and prolific subduction-related volcanic activity in the world, with the largest number of caldera-forming eruptions per length of the volcanic arc. Among those, Gorely volcano has a topographically prominent Late Pleistocene caldera (13 km × 12 km, estimated to have produced >100 km3 of magma), which is now almost completely filled by a central cone. We report new 40Ar/39Ar ages and geochemical and isotopic data for newly recognized Mid-Pleistocene ignimbrite units of large but unknown volume sourced from the Gorely eruptive center, most of which were deposited in marginal glacial conditions. These ignimbrites have crystallinities of 9–24% and most are quartz-, amphibole-, and zircon-undersaturated. Additionally, we studied 32 eruptive units, including stratigraphically constrained Holocene tephra, and pre- and post-caldera lava sequences, to understand the petrogenetic and temporal evolution of this long-lived, multi-cyclic, arc volcano. Material erupted prior to the formation of the modern Gorely edifice, including the voluminous ignimbrites and eruptions of the ‘pra-Gorely’ stage, consist primarily of dacite and andesite, whereas sequences of the modern Gorely edifice are represented by basalt to basaltic andesite. MELTS and EC-AFC modeling shows that it is possible to obtain silicic compositions near those of the evolved ignimbrite compositions through 60–75% fractional crystallization at 1 kbar and nickel–nickel oxide (NNO) oxygen fugacity. However, our newly compiled major and trace element data for Gorely yield two separate bimodal peaks in a SiO2–frequency diagram, showing a prominent Daly Gap, with a deficiency in andesite. Trace element concentrations define two separate trends, one for more silicic and another for more mafic sequences. Additionally, δ18Omelt values reconstructed from coexisting plagioclase and clinopyroxene phenocrysts range from a low value of 4·85‰ to a normal value of 6·22‰. The low δ18O values range throughout the known lifespan of Gorely, with the lowest value being from the first known ignimbrite to erupt, indicating episodic but temporally decreasing crustal assimilation of previously hydrothermally altered material. 87Sr/86Sr and 143Nd/144Nd ratios show wide ranges from 0·70328 to 0·70351 and from 0·51303 to 0·51309 respectively, also suggesting incorporation of surrounding crust, although there are less clear trends throughout the lifespan of Gorely. The combination of light and diverse δ18O values with elevated 87Sr/86Sr and low 143Nd/144Nd ratios suggests contamination by older and isotopically diverse, low-δ18O country-rocks, such as the neighboring 11 Ma Akhomten granitic massif, which shows ranges in δ18O, 87Sr/86Sr, and 144Nd/143Nd values overlapping with the Gorely magmas. In addition, the presence of glomerocrysts and mafic enclaves in the majority of Gorely dacites indicates a period of crystal settling and subsequent intrusion of hot, primitive basalt that probably triggered eruption. Finally, elevated Nb concentrations relative to other Kamchatkan volcanoes suggest that Gorely magmas may involve an enriched component, probably caused by delamination of a lower crustal root. Our results argue for an incremental view of silicic magma generation at so-called ‘long-term eruptive centers’, in Kamchatka and worldwide, consisting of alternating episodes of magmatic and hydrothermal activity, and glacial advances and retreats. We demonstrate that large-volume, isotopically distinct, silicic magma can be generated rapidly between cone-building phases of volcanic activity through a combination of fractional crystallization, assimilation of older country rocks, and shallow assimilation of hydrothermally altered but otherwise petrochemically similar older intracaldera tuffs and intrusions. These transient shallow silicic magma chambers empty nearly completely in ignimbrite-forming eruptions after 103–105 years of assembly, partially triggered by glacial surface dynamics

    Correlation of ignimbrites using characteristic remanent magnetization and anisotropy of magnetic susceptibility, Central Andes, Bolivia

    Get PDF
    Large ignimbrite flare-ups provide records of profound crustal modification during batholith formation at depth. The locations of source calderas and volumes and ages of the eruptions must be determined to develop models for the tectonomagmatic processes that occur during these events. Although high-precision isotopic ages of the ignimbrites are critical, less expensive and more rapid techniques, such as paleomagnetism, can extend the temporal information from dated outcrops. Paleomagnetic and rock magnetic data, including characteristic remanent magnetization (ChRM) and anisotropy of magnetic susceptibility (AMS), from the Altiplano-Puna Volcanic Complex of the Central Andes reliably identify calderas and eight associated Mio-Pliocene ignimbrites. ChRM results indicate a larger between-site error for most ignimbrites, in comparison to within-site scatter. Part of this dispersion may be due to tumescence/detumescence associated with the caldera-forming eruptions, but most of the effect is probably due to the recording of paleosecular variation during cooling and vapor-phase crystallization of the thick ignimbrites. AMS data identify the source calderas for four ignimbrites and provide limits on possible post-emplacement rotations of the deposits. AMS data indicate significant topographic control on inferred flow directions, implying that the flows were dense and/or of low mobility

    Contents and Masthead

    Get PDF

    A Growth Mindset: Fostering Resilience and Success in the Middle School Mathematics Classroom

    Get PDF
    Undergraduate Applie

    Screening for C9ORF72 repeat expansion in FTLD

    Get PDF
    In the present study we aimed to determine the prevalence of {C9ORF72} {GGGGCC} hexanucleotide expansion in our cohort of 53 frontotemporal lobar degeneration (FTLD) patients and 174 neurologically normal controls. We identified the hexanucleotide repeat, in the pathogenic range, in 4 (2 bv-frontotemporal dementia (FTD) and 2 FTD-amyotrophic lateral sclerosis ALS) out of 53 patients and 1 neurologically normal control. Interestingly, 2 of the \{C9ORF72\} expansion carriers also carried 2 novel missense mutations in \{GRN\} (Y294C) and in PSEN-2(I146V). Further, 1 of the \{C9ORF72\} expansion carriers, for whom pathology was available, showed amyloid plaques and tangles in addition to \{TAR\} (trans-activation response) DNA-binding protein (TDP)-43 pathology. In summary, our findings suggest that the hexanucleotide expansion is probably associated with ALS, FTD, or FTD-ALS and occasional comorbid conditions such as Alzheimer's disease. These findings are novel and need to be cautiously interpreted and most importantly replicated in larger numbers of samples

    DETERMINATION OF THE PM10 URBAN THRESHOLD VELOCITY OF RE-SUSPENSION IN AN INNER PART OF URBAN AREA

    Get PDF
    In this paper authors focus on determination of the threshold velocity of re-suspension for particles 10 m in an urban street canyon with two-way traffic. The urban wind threshold velocity of re-suspension is derived from a long-term measurement carried out in the city of Brno. A numerical modelling based on the finite volume method is used for a detail study of the relation between a wind velocity above buildings roofs and an air velocity just above the ground surface. The predicted threshold air velocity of re-suspension at the bottom part of the studied street canyon is compared with two theoretical studies on particle re-suspension. Calculations are carried out for perpendicular, longitudinal and oblique (45°) wind direction with and without inclusion of traffic dynamic. To simulate traffic, an original model developed previously by the authors is used that takes into account traffic density, speed of cars and number of traffic lanes

    Олесь Бабій - співець слави січових стрільців

    Get PDF
    The Salamanca Formation of the San Jorge Basin (Patagonia, Argentina) preserves critical records of Southern Hemisphere Paleocene biotas, but its age remains poorly resolved, with estimates ranging from Late Cretaceous to middle Paleocene. We report a multi-disciplinary geochronologic study of the Salamanca Formation and overlying Río Chico Group in the western part of the basin. New constraints include (1) an 40Ar/39Ar age determination of 67.31 ± 0.55 Ma from a basalt flow underlying the Salamanca Formation, (2) micropaleontological results indicating an early Danian age for the base of the Salamanca Formation, (3) laser ablation HR-MC-ICP-MS (high resolution-multi collector-inductively coupled plasma-mass spectrometry) U-Pb ages and a high-resolution TIMS (thermal ionization mass spectrometry) age of 61.984 ± 0.041(0.074)[0.100] Ma for zircons from volcanic ash beds in the Peñas Coloradas Formation (Río Chico Group), and (4) paleomagnetic results indicating that the Salamanca Formation in this area is entirely of normal polarity, with reversals occurring in the Río Chico Group. Placing these new age constraints in the context of a sequence stratigraphic model for the basin, we correlate the Salamanca Formation in the study area to Chrons C29n and C28n, with the Banco Negro Inferior (BNI), a mature widespread fossiliferous paleosol unit at the top of the Salamanca Formation, corresponding to the top of Chron C28n. The diverse paleobotanical assemblages from this area are here assigned to C28n (64.67–63.49 Ma), ∼2–3 million years older than previously thought, adding to growing evidence for rapid Southern Hemisphere floral recovery after the Cretaceous-Paleogene extinction. Important Peligran and “Carodnia” zone vertebrate fossil assemblages from coastal BNI and Peñas Coloradas exposures are likely older than previously thought and correlate to the early Torrejonian and early Tiffanian North American Land Mammal Ages, respectively

    Nutrition and Prevention of Alzheimer\u27s Dementia

    Get PDF
    A nutritional approach to prevent, slow, or halt the progression of disease is a promising strategy that has been widely investigated. Much epidemiologic data suggests that nutritional intake may influence the development and progression of Alzheimer’s dementia (AD). Modifiable, environmental causes of AD include potential metabolic derangements caused by dietary insufficiency and or excess that may be corrected by nutritional supplementation and or dietary modification. Many nutritional supplements contain a myriad of health promoting constituents (anti-oxidants, vitamins, trace minerals, flavonoids, lipids, …etc.) that may have novel mechanisms of action affecting cellular health and regeneration, the aging process itself, or may specifically disrupt pathogenic pathways in the development of AD. Nutritional modifications have the advantage of being cost effective, easy to implement, socially acceptable and generally safe and devoid of significant adverse events in most cases. Many nutritional interventions have been studied and continue to be evaluated in hopes of finding a successful agent, combination of agents, or dietary modifications that can be used for the prevention and or treatment of AD. The current review focuses on several key nutritional compounds and dietary modifications that have been studied in humans, and further discusses the rationale underlying their potential utility for the prevention and treatment of AD
    corecore