1,746 research outputs found

    Identifikasi Dan Problematika Penggunaan Lahan Lingkungan Bantaran Sungai Terhadap Peraturan Pemerintah Dan Daerah Di Kota Banjarmasin

    Full text link
    AIMS:The role of adoptive immunotherapy (AIT) for patients with hepatocellular carcinoma (HCC) who have received curative therapy is still not well illustrated. This timely meta-analysis aims to update the current evidence on efficacy and safety of AIT for patients with HCC who have received curative therapy. METHODS:We searched PubMed, EMBASE, Scopus and the Cochrane Library Through January 2017 for relevant studies. Mortality and tumor recurrence were compared between patients with or without adjuvant AIT. The meta-analysis was performed using Review Manager 5.3. RESULTS:Eight studies involving 1861 patients met the eligibility criteria and were meta-analyzed. Adjuvant AIT was associated with significantly lower mortality at 1 year (RR 0.64, 95%CI 0.52-0.79), 3 years (RR 0.73, 95%CI 0.65-0.81) and 5 years (RR 0.86, 95%CI 0.79-0.94). Similarly, adjuvant AIT was associated with significantly lower recurrence rate than curative therapies alone at 1 year (RR 0.64, 95%CI 0.49-0.82), 3 years (RR 0.85, 95%CI 0.79-0.91) and 5 years (RR 0.90, 95%CI 0.85-0.95). Short-term outcomes were confirmed in sensitivity analyses based on randomized trials or choice of random- or fixed-effect meta-analysis model. None of the included patients experienced grade 4 adverse events. CONCLUSIONS:This timely meta-analysis confirms the evidence that adjuvant AIT for patients with HCC after curative treatment lowers risk of mortality and tumor recurrence

    Disorder Operator and R\'enyi Entanglement Entropy of Symmetric Mass Generation

    Full text link
    In recent years a consensus has gradually been reached that the previously proposed deconfined quantum critical point (DQCP) for spin-1/2 systems, an archetypal example of quantum phase transition beyond the classic Landau's paradigm, actually does not correspond to a true unitary conformal field theory (CFT). In this work we carefully investigate another type of quantum phase transition supposedly beyond the similar classic paradigm, the so called ``symmetric mass generation" (SMG) transition proposed in recent years. We employ the sharp diagnosis including the scaling of disorder operator and R\'enyi entanglement entropy in large-scale lattice model quantum Monte Carlo simulations. Our results strongly suggest that the SMG transition is indeed an unconventional quantum phase transition and it should correspond to a true (2+1)d(2+1)d unitary CFT.Comment: 15 pages, 10 figure

    High-speed measurement-device-independent quantum key distribution with integrated silicon photonics

    Full text link
    Measurement-device-independent quantum key distribution (MDI-QKD) removes all detector side channels and enables secure QKD with an untrusted relay. It is suitable for building a star-type quantum access network, where the complicated and expensive measurement devices are placed in the central untrusted relay and each user requires only a low-cost transmitter, such as an integrated photonic chip. Here, we experimentally demonstrate a 1.25 GHz silicon photonic chip-based MDI-QKD system using polarization encoding. The photonic chip transmitters integrate the necessary encoding components for a standard QKD source. We implement random modulations of polarization states and decoy intensities, and demonstrate a finite-key secret rate of 31 bps over 36 dB channel loss (or 180 km standard fiber). This key rate is higher than state-of-the-art MDI-QKD experiments. The results show that silicon photonic chip-based MDI-QKD, benefiting from miniaturization, low-cost manufacture and compatibility with CMOS microelectronics, is a promising solution for future quantum secure networks.Comment: 30 pages, 12 figure

    The CDEX-1 1 kg Point-Contact Germanium Detector for Low Mass Dark Matter Searches

    Full text link
    The CDEX Collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold p-type point-contact germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact p+ electrode and the outside n+ electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both p+ and n+ electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments.Comment: 6 pages, 8 figure

    Stress-induced tRNA-derived RNAs: a novel class of small RNAs in the primitive eukaryote Giardia lamblia

    Get PDF
    Giardia lamblia is an early diverging and evolutionarily successful protozoan as it can enter into a dormant cyst stage from a vegetative trophozoite. During dormant stage, its metabolic rate decreases dramatically. However, to date, the regulatory molecules participating in the initiation and maintenance of this process have not been fully investigated. In this study, we have identified a class of abundant small RNAs named sitRNAs, which are āˆ¼46 nucleotides in length and accumulate in G. lamblia encysting cultures. Remarkably, they are derived from the 3ā€² portion of fully matured tRNAs by cleavage of the anticodon left arm, with the 3ā€² terminal CCA triplex still connected. During differentiation, only a limited portion of mature tRNAs is cleaved, but this cleavage occurs almost in the entire tRNA family. sitRNAs begin to accumulate as early as 3 h after initiation of encystation and are maintained at a relatively stable level during the whole process, exhibiting an expression peak at around 24 hr. Our studies further show that sitRNAs can be induced by several other stress factors, and in the case of serum deprivation, both tRNAs and sitRNAs degrade rapidly, with the accumulation of tRNA being halved. Our results may provide new insight into a novel mechanism for stressed G. lamblia to regulate gene expression globally

    Cortical Surface Area Rather Than Cortical Thickness Potentially Differentiates Radiation Encephalopathy at Early Stage in Patients With Nasopharyngeal Carcinoma

    Get PDF
    Radiation encephalopathy (RE) is one of the most severe complications in nasopharyngeal carcinoma (NPC) patients after radiotherapy (RT). However, the morphological alteration of early RE is insufficiently investigated. We aimed to investigate the cortical thickness and surface area alterations in NPC patients with or without RE in the follow-up. A total of 168 NPC patients each underwent a single scan and analysis at various times either Pre-RT (n = 56) or Post-RT (n = 112). We further divided the Post-RT NPC patients into three groups based on the time of the analysis following RT (Post-RTwithin 6 months and Post-RT7-12 months) or whether RE signs were detected in the analysis (Post-RTRE proved in follow-up). We confined the vertex-wise analyses of the cortical thickness and surface area to the bilateral temporal lobes. Interestingly, we revealed a gradual increase in the cortical surface area of the temporal lobe with increasing time after RT within the Post-RTRE proved in follow-up group, consistent with the between-group findings, which showed a significant increase in cortical surface area in the Post-RTRE proved in follow-up group relative to the Pre-RT group and the Post-RTwithin 6 months group. By contrast, such a trend was not observed in the cortical thickness findings. We concluded that the cortical surface area, rather than cortical thickness, may serve as a potential biomarker for early diagnosis of RE

    Wolfberry genomes and the evolution of LyciumĀ (Solanaceae)

    Get PDF
    AbstractWolfberry Lycium, an economically important genus of the Solanaceae family, contains approximately 80 species and shows a fragmented distribution pattern among the Northern and Southern Hemispheres. Although several herbaceous species of Solanaceae have been subjected to genome sequencing, thus far, no genome sequences of woody representatives have been available. Here, we sequenced the genomes of 13 perennial woody species of Lycium, with a focus on Lycium barbarum. Integration with other genomes provides clear evidence supporting a whole-genome triplication (WGT) event shared by all hitherto sequenced solanaceous plants, which occurred shortly after the divergence of Solanaceae and Convolvulaceae. We identified new gene families and gene family expansions and contractions that first appeared in Solanaceae. Based on the identification of self-incompatibility related-gene families, we inferred that hybridization hotspots are enriched for genes that might be functioning in gametophytic self-incompatibility pathways in wolfberry. Extremely low expression of LOCULE NUBER (LC) and COLORLESS NON-RIPENING (CNR) orthologous genes during Lycium fruit development and ripening processes suggests functional diversification of these two genes between Lycium and tomato. The existence of additional flowering locus C-like MADS-box genes might correlate with the perennial flowering cycle of Lycium. Differential gene expression involved in the lignin biosynthetic pathway between Lycium and tomato likely illustrates woody and herbaceous differentiation. We also provide evidence that Lycium migrated from Africa into Asia, and subsequently from Asia into North America. Our results provide functional insights into Solanaceae origins, evolution and diversification.</jats:p
    • ā€¦
    corecore