198 research outputs found

    CAV3 mutation in a patient with transient hyperCKemia and myalgia

    Get PDF
    Mutations in caveolin-3 (CAV3) can lead to different clinical phenotypes affecting skeletal or cardiac muscles. Here, we describe a patient with Klinefelter syndrome, ulcerative colitis and Sjögren syndrome, who developed transient hyperCKemia, myalgia and mild muscular weakness. Using whole exome sequencing (WES), a missense mutation G169A was found in the CAV3 gene. In addition, we identified a homozygous frameshift deletion in MS4A12 that may contribute to inflammatory bowel disease, further demonstrating usefulness of WES in dual molecular diagnoses

    Sheep Genome Functional Annotation Reveals Proximal Regulatory Elements Contributed to The Evolution of Modern Breeds

    Get PDF
    Domestication fundamentally reshaped animal morphology, physiology and behaviour, offering the opportunity to investigate the molecular processes driving evolutionary change. Here we assess sheep domestication and artificial selection by comparing genome sequence from 43 modern breeds (Ovis aries) and their Asian mouflon ancestor (O. orientalis) to identify selection sweeps. Next, we provide a comparative functional annotation of the sheep genome, validated using experimental ChIP-Seq of sheep tissue. Using these annotations, we evaluate the impact of selection and domestication on regulatory sequences and find that sweeps are significantly enriched for protein coding genes, proximal regulatory elements of genes and genome features associated with active transcription. Finally, we find individual sites displaying strong allele frequency divergence are enriched for the same regulatory features. Our data demonstrate that remodelling of gene expression is likely to have been one of the evolutionary forces that drove phenotypic diversification of this common livestock species

    Whole-Exome Sequencing in Familial Parkinson Disease

    Get PDF
    IMPORTANCE: Parkinson disease (PD) is a progressive neurodegenerative disease for which susceptibility is linked to genetic and environmental risk factors. OBJECTIVE: To identify genetic variants contributing to disease risk in familial PD. DESIGN, SETTING, AND PARTICIPANTS: A 2-stage study design that included a discovery cohort of families with PD and a replication cohort of familial probands was used. In the discovery cohort, rare exonic variants that segregated in multiple affected individuals in a family and were predicted to be conserved or damaging were retained. Genes with retained variants were prioritized if expressed in the brain and located within PD-relevant pathways. Genes in which prioritized variants were observed in at least 4 families were selected as candidate genes for replication in the replication cohort. The setting was among individuals with familial PD enrolled from academic movement disorder specialty clinics across the United States. All participants had a family history of PD. MAIN OUTCOMES AND MEASURES: Identification of genes containing rare, likely deleterious, genetic variants in individuals with familial PD using a 2-stage exome sequencing study design. RESULTS: The 93 individuals from 32 families in the discovery cohort (49.5% [46 of 93] female) had a mean (SD) age at onset of 61.8 (10.0) years. The 49 individuals with familial PD in the replication cohort (32.6% [16 of 49] female) had a mean (SD) age at onset of 50.1 (15.7) years. Discovery cohort recruitment dates were 1999 to 2009, and replication cohort recruitment dates were 2003 to 2014. Data analysis dates were 2011 to 2015. Three genes containing a total of 13 rare and potentially damaging variants were prioritized in the discovery cohort. Two of these genes (TNK2 and TNR) also had rare variants that were predicted to be damaging in the replication cohort. All 9 variants identified in the 2 replicated genes in 12 families across the discovery and replication cohorts were confirmed via Sanger sequencing. CONCLUSIONS AND RELEVANCE: TNK2 and TNR harbored rare, likely deleterious, variants in individuals having familial PD, with similar findings in an independent cohort. To our knowledge, these genes have not been previously associated with PD, although they have been linked to critical neuronal functions. Further studies are required to confirm a potential role for these genes in the pathogenesis of PD

    Biallelic GRM7 variants cause epilepsy, microcephaly, and cerebral atrophy

    Get PDF
    Objective: Defects in ion channels and neurotransmitter receptors are implicated in developmental and epileptic encephalopathy (DEE). Metabotropic glutamate receptor 7 (mGluR7), encoded by GRM7, is a presynaptic G-protein-coupled glutamate receptor critical for synaptic transmission. We previously proposed GRM7 as a candidate disease gene in two families with neurodevelopmental disorders (NDDs). One additional family has been published since. Here, we describe three additional families with GRM7 biallelic variants and deeply characterize the associated clinical neurological and electrophysiological phenotype and molecular data in 11 affected individuals from six unrelated families. Methods: Exome sequencing and family-based rare variant analyses on a cohort of 220 consanguineous families with NDDs revealed three families with GRM7 biallelic variants; three additional families were identified through literature search and collaboration with a clinical molecular laboratory. Results: We compared the observed clinical features and variants of 11 affected individuals from the six unrelated families. Identified novel deleterious variants included two homozygous missense variants (c.2671G>A:p.Glu891Lys and c.1973G>A:p.Arg685Gln) and one homozygous stop-gain variant (c.1975C>T:p.Arg659Ter). Developmental delay, neonatal- or infantile-onset epilepsy, and microcephaly were universal. Three individuals had hypothalamic–pituitary–axis dysfunction without pituitary structural abnormality. Neuroimaging showed cerebral atrophy and hypomyelination in a majority of cases. Two siblings demonstrated progressive loss of myelination by 2 years in both and an acquired microcephaly pattern in one. Five individuals died in early or late childhood. Conclusion: Detailed clinical characterization of 11 individuals from six unrelated families demonstrates that rare biallelic GRM7 pathogenic variants can cause DEEs, microcephaly, hypomyelination, and cerebral atrophy. © 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association

    Exome sequencing reveals predominantly de novo variants in disorders with intellectual disability (ID) in the founder population of Finland

    Get PDF
    The genetics of autosomal recessive intellectual disability (ARID) has mainly been studied in consanguineous families, however, founder populations may also be of interest to study intellectual disability (ID) and the contribution of ARID. Here, we used a genotype-driven approach to study the genetic landscape of ID in the founder population of Finland. A total of 39 families with syndromic and non-syndromic ID were analyzed using exome sequencing, which revealed a variant in a known ID gene in 27 families. Notably, 75% of these variants in known ID genes were de novo or suspected de novo (64% autosomal dominant; 11% X-linked) and 25% were inherited (14% autosomal recessive; 7% X-linked; and 4% autosomal dominant). A dual molecular diagnosis was suggested in two families (5%). Via additional analysis and molecular testing, we identified three cases with an abnormal molecular karyotype, including chr21q22.12q22.2 uniparental disomy with a mosaic interstitial 2.7 Mb deletion covering DYRK1A and KCNJ6. Overall, a pathogenic or likely pathogenic variant was identified in 64% (25/39) of the families. Last, we report an alternate inheritance model for 3 known ID genes (UBA7, DDX47, DHX58) and discuss potential candidate genes for ID, including SYPL1 and ERGIC3 with homozygous founder variants and de novo variants in POLR2F and DNAH3. In summary, similar to other European populations, de novo variants were the most common variants underlying ID in the studied Finnish population, with limited contribution of ARID to ID etiology, though mainly driven by founder and potential founder variation in the latter case.Peer reviewe

    Genetic architecture of laterality defects revealed by whole exome sequencing

    Get PDF
    Aberrant left-right patterning in the developing human embryo can lead to a broad spectrum of congenital malformations. The causes of most laterality defects are not known, with variants in established genes accounting for <20% of cases. We sought to characterize the genetic spectrum of these conditions by performing whole-exome sequencing of 323 unrelated laterality cases. We investigated the role of rare, predicted-damaging variation in 1726 putative laterality candidate genes derived from model organisms, pathway analyses, and human phenotypes. We also evaluated the contribution of homo/hemizygous exon deletions and gene-based burden of rare variation. A total of 28 candidate variants (26 rare predicted-damaging variants and 2 hemizygous deletions) were identified, including variants in genes known to cause heterotaxy and primary ciliary dyskinesia (ACVR2B, NODAL, ZIC3, DNAI1, DNAH5, HYDIN, MMP21), and genes without a human phenotype association, but with prior evidence for a role in embryonic laterality or cardiac development. Sanger validation of the latter variants in probands and their parents revealed no de novo variants, but apparent transmitted heterozygous (ROCK2, ISL1, SMAD2), and hemizygous (RAI2, RIPPLY1) variant patterns. Collectively, these variants account for 7.1% of our study subjects. We also observe evidence for an excess burden of rare, predicted loss-of-function variation in PXDNL and BMS1- two genes relevant to the broader laterality phenotype. These findings highlight potential new genes in the development of laterality defects, and suggest extensive locus heterogeneity and complex genetic models in this class of birth defects

    Centers For Mendelian Genomics: a Decade of Facilitating Gene Discovery

    Get PDF
    PURPOSE: Mendelian disease genomic research has undergone a massive transformation over the past decade. With increasing availability of exome and genome sequencing, the role of Mendelian research has expanded beyond data collection, sequencing, and analysis to worldwide data sharing and collaboration. METHODS: Over the past 10 years, the National Institutes of Health-supported Centers for Mendelian Genomics (CMGs) have played a major role in this research and clinical evolution. RESULTS: We highlight the cumulative gene discoveries facilitated by the program, biomedical research leveraged by the approach, and the larger impact on the research community. Beyond generating a list of gene-phenotype relationships and participating in widespread data sharing, the CMGs have created resources, tools, and training for the larger community to foster understanding of genes and genome variation. The CMGs have participated in a wide range of data sharing activities, including deposition of all eligible CMG data into the Analysis, Visualization, and Informatics Lab-space (AnVIL), sharing candidate genes through the Matchmaker Exchange and the CMG website, and sharing variants in Genotypes to Mendelian Phenotypes (Geno2MP) and VariantMatcher. CONCLUSION: The work is far from complete; strengthening communication between research and clinical realms, continued development and sharing of knowledge and tools, and improving access to richly characterized data sets are all required to diagnose the remaining molecularly undiagnosed patients
    • …
    corecore