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Sheep genome functional annotation reveals
proximal regulatory elements contributed to the
evolution of modern breeds
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Antonio Reverter1, Miguel Perez-Enciso 2,3, Rudiger Brauning4, Shannon Clarke4, Alan McCulloch4,

Wahid Zamani5, Saeid Naderi 6, Hamid Reza Rezaei7, Francois Pompanon 8, Pierre Taberlet8,

Kim C. Worley9, Richard A. Gibbs9, Donna M. Muzny9, Shalini N. Jhangiani9, Noelle Cockett10,

Hans Daetwyler11,12 & James Kijas1

Domestication fundamentally reshaped animal morphology, physiology and behaviour,

offering the opportunity to investigate the molecular processes driving evolutionary change.

Here we assess sheep domestication and artificial selection by comparing genome sequence

from 43 modern breeds (Ovis aries) and their Asian mouflon ancestor (O. orientalis) to

identify selection sweeps. Next, we provide a comparative functional annotation of the sheep

genome, validated using experimental ChIP-Seq of sheep tissue. Using these annotations, we

evaluate the impact of selection and domestication on regulatory sequences and find that

sweeps are significantly enriched for protein coding genes, proximal regulatory elements of

genes and genome features associated with active transcription. Finally, we find individual

sites displaying strong allele frequency divergence are enriched for the same regulatory

features. Our data demonstrate that remodelling of gene expression is likely to have been one

of the evolutionary forces that drove phenotypic diversification of this common livestock

species.
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The domestication of plants and animals commenced
around 10,000 years ago and precipitated enormous soci-
etal change by transitioning human kind from hunter-

gatherers to agricultural settlers1,2. The impact on domesticated
animals themselves has also been transformative, with radical
phenotypic, morphological and behavioural changes occurring in
comparison to their wild counterparts. Elucidating the molecular
basis of these changes has the potential to assist the process of
animal breeding and illuminate how genotypic variation influ-
ences phenotype. Analyses using population scale SNP array
data3–5 and more recently whole-genome sequence data6–10 have
identified regions and genes under selection in domestic species.
To extend our understanding beyond key genes, multiple studies
have sought to identify categories of sites or genomic features
over-represented in sweep regions. These have included evolu-
tionarily conserved elements and proximity to transcription start
sites6,8,10; however, the approach has been severely hampered by
the paucity of detailed functional annotation available for live-
stock animal species. This is starting to be addressed by the
Functional Annotation of Animal Genomes (FAANG) con-
sortium; however, human regulatory information remains by far
the most abundant courtesy of the ENCODE11 and Epigenetics
Roadmap initiatives12. In both, chromatin state and DNA
accessibility assays have been used across a plethora of human cell
lines and tissues to comprehensively map regulatory features.
This has proven invaluable for investigating the link between
genetic variation, gene regulation and complex human dis-
eases13,14, as well as human adaptive traits15.

Exploiting the wealth of ENCODE data in non-human species
is dependent on the strength of sequence and functional con-
servation. Encouragingly, sequence conservation of non-coding
elements has been successfully used to identify functional reg-
ulatory sequences between diverse species16,17. Further, recent
comparative genomic studies in mammals have shown that
despite a significant divergence of Transcription Factor Binding
Sites (TFBSs)18,19 and enhancers20, there is a substantial core of
regulatory elements which can be characterised based on
sequence conservation21–23. For example, Mouse ENCODE
comparative analyses concluded that 44% of promoters and 40%
of enhancers in mice that mapped to human retained functional
and tissue specific activity22.

In this study, we investigate the impact of sheep domestication
and subsequent artificial selection on genomic variation. First, we
analyse genome sequences from a global distribution of 43
domestic sheep breeds and 17 Asiatic mouflon, its wild coun-
terpart. Population diversity analysis identified 1420 sweep
regions under positive selection in domestic sheep. Next, we use
human genome regulatory information to generate a comparative
functional annotation of the sheep genome, before assessing it
against histone modification data we collected from sheep adipose
tissue. Finally, we assess the strength of overlap between selection
signatures and genomic regions implicated in regulation of gene
expression. We find strong and significant overlap for multiple
components of the proximal gene regulatory machinery, includ-
ing promoters and chromatin states indicative of active tran-
scription. These results provide both a high-resolution genomic
view of positive selection and a first draft functional annotation of
the sheep genome. Considered together, our results suggest
modification to gene regulatory networks has been an important
evolutionary driver of the phenotypic changes that distinguish
domestic sheep from their wild ancestors.

Results
Genetic variation among domestic and wild sheep. We
sequenced the genome of 67 domestic sheep drawn from 43

phenotypically diverse breeds for comparison with 17 Asiatic
Mouflon representing their wild ancestor (Fig. 1a, Supplementary
Data 1). Sequencing to an average depth of 11.82× coverage was
followed by alignment and variant calling to identify 28.1 million
high-quality SNPs. Analysis using the protein coding gene set of
the reference assembly OARv3.124 revealed <1% of SNP
(218,762) were located in exons (Supplementary Table 1), and of
these the majority (133,891) were synonymous variants (Sup-
plementary Table 2). Despite sampling 43 geographically dis-
persed breeds, domestic sheep contained fewer private SNP
(Fig. 1b, c, Supplementary Table 3, Supplementary Data 2), and
lower nucleotide diversity (π) than wild sheep (domestic sheep
π = 0.16% per nucleotide, mouflon π = 0.20%; Fig. 1d). Reduced
diversity is an expected consequence of domestication, however
in sheep the magnitude of change appears smaller than for some
other domesticates8,25. This suggests sheep domestication
captured a wide sampling of diversity from Asiatic mouflon,
consistent with the finding that many modern breeds retain high-
effective population size4 and a diverse representation of mtDNA
haplogroups26. Three metrics that assess genetic relatedness
revealed Mouflon and domestic breeds remain relatively closely
related. We found 70% of SNP in domestic sheep were also
polymorphic in Mouflon (14.3 out of 20.4 M SNP, Fig. 1b) and
the allele frequencies of SNP were highly correlated (Fig. 1c).
Finally, population differentiation between domestic and wild
sheep was low for an inter-species comparison (FST = 0.093). We
next evaluated the relationship between individual genomes using
Principal Component Analysis (PCA), identifying two distinct
clusters of Mouflon from geographically separate areas of their
range (Supplementary Fig. 1). PCA of domestic sheep genomes
clustered animals according to their geographic origin of breed
formation (Fig. 1e). PC1 captured an east–west cline, PC2 a
north–south cline and breeds from the Middle East (the
domestication centre) took a central position with near zero PC
values, recapitulating a phylo-geographic structure consistent
with earlier SNP array based investigations4,27.

Genomic regions under selection in domestic sheep. We sought
to identify genomic regions impacted by positive selection during
the domestication of sheep and/or the artificial selection that
followed. By sequencing a globally representative collection of
phenotypically diverse breeds and searching for common sweep
regions, we expect to enrich for selection events acting during
domestication or prior to the global radiation of breeds. However
caution is required, as sweep events common to divergent breeds
may be the result of much more recent selection28. Domestic
sheep genomes were interrogated for shared regions characterised
by both low diversity and high divergence compared to wild
sheep. First, we estimated allele frequency divergence as FST
between species in 20 kb windows (Supplementary Fig. 2a). To
assess the direction of selection effect, nucleotide diversity (π) was
estimated separately within domestic and wild sheep, before the
ratio of mouflon/domestic π was plotted for each genomic bin9,29

(Supplementary Fig. 2b). Joint evaluation of both metrics defined
1420 bins putatively under selection in domestic animals and a
further 28 in Mouflon (P-adj <0.01, Fig. 2a, Supplementary
Data 3–4). Physically co-located bins (within 50 kb) were joined
to define 635 regions (average size 36.3 kb) containing 430 genes
(Supplementary Data 5–6). Inspection revealed many genes have
previously been shown to be influenced by selection in livestock
or associated in sheep biology (Table 1, Supplementary Table 4).
These include SOCS2 for animal weight and milk production30,
ITCH–ASIP for coat colour31 and VEGFA involved in early
development and reproductive success4,32. Additional genes
implicated in other domesticates, include SOX2 in rabbits8,
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NR6A1 associated with vertebrae number in domestic pig7, TBX3
associated with pigmentation in horses33 and ESR1 associated
with prolificacy in pigs34 (Supplementary Fig. 3a). One promi-
nent example is KITLG, a protein involved in melanocyte
development and pigmentation in a variety of mammalian spe-
cies35–39. In sheep, selection sweeps flank either side of the KITLG
coding exons suggesting they flag alleles with a gene regulatory
function (Fig. 2b, c). Another example is the NCAPG–LCORL
locus implicated in controlling height and stature, however it is
unclear which gene exerts the effect7,40,41. Domestic sheep con-
tain a selective sweep spanning the LCORL promoter region,
while mouflon contain a sweep downstream of NCAPG (Sup-
plementary Fig. 3b). Many of these candidate genes are likely to
contribute to phenotypic variation, however in the absence of
individually recorded trait data analysed using an approach, such
as GWAS, establishing the direct link between these genes and

their functional consequence is difficult using selection sweep
methodology alone.

Biological processes affected by domestication and selection.
To identify the biological processes influences by domestication
and artificial selection, we mapped the ovine sweep regions to the
human genome and examined their ontological enrichment using
GREAT42 (see Methods section and Supplementary Data 7). This
revealed a significant enrichment (P.adj <0.05 hypergeometric
and binomial test) for processes consistent with the evolution of
domestic animals from their wild ancestors. One prominent
example is dorsal/ventral patterning (Table 2, Supplementary
Data 7) as reduction in body size was a quick and early response
to domestication across species43. A second is regulation of lipid
metabolism which may reflect human meditated alteration of
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muscularity and fatness as sheep were actively managed as a food
source44. A third example involves sexual maturation, as humans
increasingly exerted control over breeding, pressure to maintain
beneficial sexual fitness traits in the wild were removed, reducing
sexual dimorphism and altering the timing of reproduction45.
The residual consequences of these changes were identified in the
data, as we identified significant biological processes associated
with sexual differentiation, particularly in male sexual char-
acteristics and differentiation (Table 2, Supplementary Data 7).
We next evaluated sheep sweep regions against known mouse
mutants and their phenotypic consequences. This identified
strong enrichment for traits, including oogenesis, litter size, sex-
ual maturation and ovary morphology (Supplementary Data 8).

Preliminary functional annotation of the sheep genome. In the
absence of detailed functional annotation for any livestock gen-
ome, we used comparative genomics to predict ovine regulatory
elements using human data11,12. Reciprocal liftOver was used to
predict the ovine genome location of ENCODE promoters and
enhancers, along with 12 chromatin states built using 127 diverse
epigenomes12 (Fig. 3a, see Methods section). ENCODE histone
modification marks and transcription factor binding sites for
proximal promoters and distal enhancers were predicted with
similar mapping efficiency (Supplementary Table 5) while higher
variability was observed across the set of 12 chromatin states.
Approximately 40–50% of active state elements, or elements
associated with expressed genes, were reciprocally mapped

Table 1 Genes associated with selective sweeps in domestic animals reported in other studies

Chr Start End Avg rnk FST and π π FST Closest genes Distance to closest gene Function

13 50310001 50650000 2 3.56 0.53 PANK2 0 Neurodegeneration
3 124790001 125080000 21.5 2.80 0.35 KITLG 27570 Coat colour
2 184990001 185040000 42.5 1.98 0.33 GLI2 139099 Growth
1 199640001 199790000 51 1.79 0.35 IGF2BP2 0 Adiposity
4 78890001 79000000 51.5 2.44 0.31 GLI3 29289 Pigmentation
17 59450001 59520000 62.5 2.32 0.30 TBX3 215541 Pigmentation
9 36140001 36240000 63 1.72 0.34 PLAG1 0 Fertility, stature
15 21900001 22010000 70.5 1.60 0.39 BCO2 0 Yellow-fat
9 13570001 13610000 82.5 1.85 0.30 DGAT1 0 Milk fat
6 37420001 37510000 144 1.56 0.29 LCORL 0 Weight/height
3 124640001 124680000 184 1.69 0.26 KITLG 0 Coat colour
8 75670001 75700000 228.5 1.97 0.24 ESR1 0 Litter size; prolifacy
6 38500001 38530000 245.5 1.62 0.25 LCORL 1047670 Weight/height
5 19460001 19480000 312.5 1.23 0.27 IRF1 5040 Immune function
3 129730001 129750000 359 0.94 0.31 SOCS2 7494 Weight and milk production
1 100990001 101010000 383.5 1.26 0.24 TCHH 0 Hair
4 78800001 78820000 386.5 1.15 0.26 GLI3 209289 Pigmentation
5 85880001 85900000 405 1.11 0.26 MEF2C 173852 Skeletal muscle development
2 105830001 105850000 417.5 1.27 0.23 HAND2 235173 Limb development
20 17530001 17550000 434.5 1.207 0.24 VEGFA 147890 Reproduction
13 63380001 63400000 469 1.237 0.22 ITCH 0 Coat colour
1 203460001 203480000 481 0.977 0.25 SOX2 52282 Stem cell maintenance
6 35290001 35310000 486.5 1.05 0.24 GPRIN3 201294 Brain development
6 70290001 70310000 492.5 1.24 0.21 KIT 55390 Coat colour

Table 2 Gene ontology biological process—top 15 enrichment results for identified selective sweeps (Great v.3.0)42

GO biological process

Term name Binom raw P-
value

Binom FDR Q-
Val

Binom fold
enrichment

Binom observed
region hits

Binom region set
coverage

Primary alcohol catabolic process 1.12E−27 2.34E−24 23.4 27 0.020
Regionalisation 3.22E−19 9.62E−17 2.3 135 0.103
Regulation of MAPK cascade 5.84E−19 1.60E−16 2.1 173 0.132
Development of primary male sexual
characteristics

6.82E−19 1.83E−16 3.1 83 0.063

Gland development 8.90E−19 2.21E−16 2.3 138 0.105
Male gonad development 2.34E−18 5.20E−16 3.3 73 0.055
Male sex differentiation 4.05E−18 7.98E−16 3.0 83 0.063
Dorsal/ventral pattern formation 9.33E−18 1.68E−15 3.5 67 0.051
Regulation of lipid metabolic process 2.58E−17 4.09E−15 2.7 92 0.070
Negative regulation of cell cycle 6.13E−17 9.28E−15 2.6 97 0.074
Embryonic hemopoiesis 1.30E−16 1.80E−14 6.0 35 0.027
Odontogenesis 8.84E−16 1.04E−13 3.2 66 0.050
Branching morphogenesis of an epithelial
tube

1.43E−15 1.61E−13 2.63 91 0.069

Negative regulation of cellular protein
metabolic process

2.00E−14 1.65E−12 2.1 127 0.097

Development of primary sexual
characteristics

3.83E−14 2.96E−12 2.2 105 0.079
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including active TSS promoter states (TssA 41%; TssAFlank
48.5%), and transcription at the 5′ and 3′ ends of genes (TxFlnk
40%). Mapping efficiency broadly reflected evolutionary con-
servation for each genomic feature as measured by enrichment
for mammalian conserved elements12.

Human epigenetic data captures sheep regulatory elements. To
evaluate if our comparative genomics approach successfully pre-
dicted regulatory elements in sheep, we performed H3K4me3 and
H3K27ac ChIP-seq analysis of sheep late gestation perirenal
brown adipose tissue. H3K4me3 identifies active gene pro-
moters46,47, and we identified a total of 16,098 regions. Comparing
their genomic location against Roadmap active promoter state
TssA predictions revealed an 85% recovery rate (Fig. 3b, 13,767/
16,098). A large number of predicted promotors were not present,
possibly reflecting our ChIP-Seq data originate from only one
sheep tissue and timepoint. H3K27ac identifies both active pro-
moters and active enhancers, and 35,366 regions were identified.
Of these, 26,492 regions were uniquely identified by H3K27ac but
not H3K4me3 and defined in this study as enhancers. Comparing
the location of these 26,492 experimentally defined enhancers with
predicted enhancer state Enh, excluding those overlapping the
defined state TssA, revealed a recovery rate of 71% (Fig. 3b,
18,850/26,492). The recovery rate and significance for each
Roadmap and ENCODE predicted genomic feature is given in
Supplementary Fig. 4–7 and Supplementary Table 6. This revealed
the predicted features were significantly enriched for sheep reg-
ulatory elements and retained specificity between different com-
ponents of the gene regulatory machinery. For example, H3K4me3
marks recovered 85% of predicted promoters but only 29% of
enhancers while H3K27ac unique marks recovered only 19% of
predicted promoters but 71% of enhancers (Fig. 3c). Next, we
performed H3K27me3 ChIP-Seq in sheep brown adipose tissue, a
mark related to Polycomb repression. This yielded 31,942 ele-
ments. Comparison against the set of predicted regulatory features
revealed strong enrichment only for repressive features, including
repressed Polycomb and bivalent/poised TSSs (Supplementary
Table 6). This provides confidence our comparative approach
successfully recovered biologically meaningful genome feature
annotations with the sensitivity to discriminate promoters,
enhancers, and repressive regulatory elements. An example of a
predicted functional annotation is given in Fig. 3d. Finally, we
sought to explore how robust the reciprocal liftOver approach is to
the combination of species in which it is applied. Similar results
were obtained when using human Roadmap elements to predict
promoters and enhancers in the mouse, cow and pig genomes,
where in each case available histone modification mark data sets
were strongly enriched for predicted elements (Supplementary
Fig. 8, Supplementary Table 7).

Three additional properties of the predicted genome features
were assessed to evaluate their quality. First, the distance from
each feature to the nearest transcription start site (TSS) was
assessed for both the sheep and human genome. This revealed that
ENCODE predicted proximal promoter elements were consis-
tently closer to TSS in the sheep genome than distal enhancers
(Supplementary Fig. 9). Second, levels of nucleotide diversity
within each predicted annotation feature were compared. This
showed epigenomic modifications reporting proximal promoters
contained lower diversity than those marking distal enhancers,
consistent with findings for other species48 (Supplementary
Fig. 10). Third, nucleotide diversity was compared between
elements active in either a ubiquitous or tissue specific manner.
Predicted promoters active in many Roadmap epigenomes (>100
cell types; TssA π< 0.06; Enh π< 0.15) had higher evolutionary
constraint compared with promoters expressed in a restricted

manner (<10 cell types, TssA π< 0.09; Enh π< 0.12, Supplemen-
tary Fig. 11). Taken together, the results from our sheep specific
histone modification data and the analysis of nucleotide diversity
validate that the collection of predicted annotated features are of
sufficient utility to address evolutionary questions.

Selection sweeps are enriched for proximal features. A key
objective of the study sought to investigate if ovine genomic
regions putatively affected during domestication and artificial
selection displayed an enrichment of functional domains asso-
ciated with protein translation, transcription or the regulation of
gene expression. As input we used the collection of genome
features described above that included: (i) sheep H3K4me3 and
H3K27ac ChIP-Seq peaks; (ii) Epigenome Roadmap predicted
chromatin states; (iii) ENCODE predicted proximal and distal
elements, and; (iv) gene model annotations from the reference
assembly OARv3.1. To test for enrichment, a location overlap
approach developed for interpretation of epigenomic data
(LOLA)49 was used to assess each genomic feature against the
distribution of sweep regions (1420 bins, Fig. 2a). This revealed
selection sweeps strongly co-localised with gene regulatory ele-
ments after correction for multiple testing (Fig. 4a). Three com-
ponents of the proximal gene regulatory machinery were
significant: enhancer elements physically associated with genes
(EnhG, LogP = 12.83), actively transcribed states (Tx, LogP =
10.68) and proximal promoter states (TxFlnk, LogP = 8.03);
(Fig. 4a, Supplementary Table 8–9). Next, we repeated the ana-
lysis after linking neighbouring outlier bins (within 50 kb) to
define 635 selective sweep regions. This was a more permissive
analysis as the genome fraction implicated with domestication
and artificial selection was higher (Methods section). Sweep
regions were significantly enriched for 14 genome features
(Supplementary Fig. 12, Supplementary Table 10). Strikingly, the
eight most strongly enriched were each components of the
proximal gene regulatory machinery and active transcription
including sheep ChIP-Seq modifications, Epigenome Roadmap
states (TxFlnk, EnhG, Tx, TssA), proximal ENCODE features
obtained by DNase I signal and transcription factor binding sites
and translated exons (CDS, Supplementary Fig. 12).

Site frequency analysis. Domestication and selection are antici-
pated to have altered the allele frequency of loci mechanistically
involved in the phenotypic and molecular changes that distin-
guish domesticates from their wild ancestors. We therefore
applied site frequency analysis to identify nucleotides with
divergent allele frequency when compared between wild and
domestic sheep genomes. This exploits the availability of whole-
genome sequence by assessing every site, and is independent from
the selection sweep methodology used above. We first estimated
allele frequencies within domestic and wild sheep using 14M sites
found to be segregating in both species. Comparison between
species revealed the majority displayed highly correlated allele
frequencies, with 8.9 M sites (63% of 14M, Supplementary
Data 9) having allele frequency difference (ΔAF) <0.2. This is
consistent with the behaviour of neutral loci between closely
related species. Only a very small fraction of loci exhibited
strongly divergent allele frequency. These are characteristic of
sites under selection, however they can be difficult to distinguish
from those impacted by genetic drift alone. A total of 9161 SNP
(0.016%) had ΔAF>0.8 and only 1059 sites had divergence
approaching the maximum (>0.9, Supplementary Data 10). We
expect this set of loci are likely to have played an outsized role in
domestication and selection, prompting us to characterise them
in more detail. To evaluate the impact of gene inactivation we
searched these sites for nonsense mutations introducing stop

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02809-1 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:859 |DOI: 10.1038/s41467-017-02809-1 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


14.00

a

b

c

1 Experimentally derived data

Source Genotype features

Proximal regulation

Distal regulation

PCG annotation

Other genome-wide features

P.adj <0.05

Log P -value random set

2 Epigenomic RoadMap

3 ENCODE cell lines

4 OARV3. 1 PCG annotation

12.00

10.00

Lo
g 

P
-v

al
ue

8.00

6.00

4.00

2.00

6,000,000 2.5

Non-synonymous

Synonymous

UTR

Intergenic
Introns

TxFInk

TssBiv

EnhG

TssA

ReprPC

Enh

Het

CDS

2

1.5

M
-v

al
ue

s
M

-v
al

ue
s

To
ta

l n
um

be
r 

of
 S

N
P

s
To

ta
l n

um
be

r 
of

 S
N

P
s

1

0.5

–0.5

0

2.5

2

1.5

0.5

1

0

–1

–1.5

–0.5

5,000,000

4,000,000

3,000,000

2,000,000

Delta allele frequency

Delta allele frequency

1,000,000

0

6,000,000

5,000,000

4,000,000

3,000,000

2,000,000

1,000,000

0

0.
00

–0
.1

0

0.
10

–0
.2

0

0.
20

–0
.3

0

0.
30

–0
.4

0

0.
40

–0
.5

0

0.
50

–0
.6

0

0.
60

–0
.7

0

0.
70

–0
.8

0

0.
80

–0
.9

0

0.
90

–1
.0

0

0.
00

–0
.1

0

0.
10

–0
.2

0

0.
20

–0
.3

0

0.
30

–0
.4

0

0.
40

–0
.5

0

0.
50

–0
.6

0

0.
60

–0
.7

0

0.
70

–0
.8

0

0.
80

–0
.9

0

0.
90

–1
.0

0

0.00
2

Enh
g Tx

TxF
In

k
CDS

Pro
xim

al 
DNas

e

She
ep

 C
hI

P H
3K

4m
e3

Pro
xim

al 
H3K

9a
c

She
ep

 H
3K

27
ac

 o
nly

Tss
Biv

In
tro

ns

Tss
AFIn

k

Dist
al 

TF

Enh
Biv

Dist
al 

H3K
27

ac Enh

Rep
rP

C

Dist
al_

H3K
9a

c

Dist
al_

H3K
4m

e1

Dist
al 

DNas
e

Het

Enh
 n

o T
SSA

TxW
k

Tss
A

UTR

Pro
xim

al 
H3K

4m
e3

In
te

rg
en

ic

BivF
In

k

Pro
xim

al 
TF

She
ep

 C
hI

P H
3K

27
ac

Source 2 2 2 2 24 4 4 2 2 2 2 2 2 23 3 3 3 3 31 4 3 3 31 1

Fig. 4 Genomic feature enrichment in selection sweeps and differentiated sites. a Strength of enrichment for 29 genome features within 1420 sweep bins
assessed by location overlap49. Genome features were derived from four different sources. The significance threshold from multiple testing is represented
by the horizontal line. b Intersection of delta allele frequency (ΔAF) with protein coding gene annotations from reference OARv3.1. The number of SNP in
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codons or that modify the splicing machinery. This revealed a
single variant, located in a splice donor site of MICAL3, was
present in sites with extreme ΔAF (>0.8) (Supplementary
Data 9). Therefore, as in chicken6, rabbit8 and pigs7, our con-
clusion is that gene inactivation via nonsense (frame-changing)
and splice site mutation has not played a major role during sheep
domestication. We then performed enrichment analysis to eval-
uate the number of SNP across ΔAF bins compared to their
location within annotated genome features. This approach has
been used previously8,50 and captures data from every segregating
SNP available. Assessment of protein coding gene annotations
derived from OARv3.1 revealed non-synonymous substitutions
were strongly enriched for SNP in high-ΔAF bins, while no
relationship was detected for introns, UTR or intergenic regions
(Fig. 4b). Regulatory elements are embedded within the intergenic

genome feature; however, they likely represent an insufficiently
large proportion to cause intergenic regions to display enrich-
ment. Our result do demonstrate that selection within coding
regions has clearly played a role in adaptive change during
domestication and selection. Of 27 SNP with ΔAF>0.80, there is
only one missense mutation where domestic sheep carry an allele
different from other vertebrate genomes (Fig. 5). The variant is in
FBXL3 (F-Box And Leucine-Rich Repeat Protein 3) which is
known to be involved in regulation of circadian rhythms51,52 and
mice with missense mutations have an altered circadian
period53,54. Many modern sheep breeds have elongated repro-
ductive seasonality compared to wild sheep, and seasonality is
photoperiod dependent. It is therefore possible the FBXL3
mutation identified here plays a role in controlling seasonality in
sheep.

Domestic Sheep

a

c d
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Fig. 5 Candidate causal missense mutation in FBXL3. a FBXL3 gene representation in human hg19 coordinates chr13:77579389-77601337. b Multiple
sequence alignment of SNP across representative vertebrates. c Allele frequency of the G (reference) or A (alternative) allele in domestic sheep (O. aries)
(n= 67) or mouflon (O. orientalis) (n= 17). d FBXL3 amino acid sequence with the substitution at residue 182 highlighted in red. Residue 358 (green) is
associated with the mouse After hour (Afh) phenotype residue 364 with the overtime phenotype (Ovt)
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In addition to analysis of protein coding gene annotation, the
same site frequency approach was applied to the RoadMap and
ENCODE predicted features (Fig. 4c, Supplementary Fig. 13).
Striking enrichment was detected for chromatin states associated
with both active and developmentally poised promoters (TxFlnk,
TssBiv), as well as proximal enhancers (EnhG, Fig. 4c). Further,
analysis of ENCODE derived features show enrichment for
proximal elements that was absent for each distal category of
regulatory element (Supplementary Fig. 13). We artificially
altered exonic allele frequencies to search for any impact on
other annotation features, and found modest enrichment that
serves as a note of caution (Supplementary Fig. 14). None the less,
the findings are remarkably similar to the feature enrichments
present in the selective sweep analysis (Fig. 4a), thus providing
evidence that domestication and artificial selection have prefer-
entially impacted the proximal gene regulatory machinery.

Discussion
We explore the genomic consequence of domestication and
subsequent artificial selection by sequencing 43 breeds of
domestic sheep and comparing them to descendants of their wild
ancestors. The data revealed both protein coding genes and
proximal regulatory elements played major roles during the
evolution of modern sheep, addressing a long standing question
in evolutionary biology concerning the relative contribution
played by regulatory versus protein coding sequence on pheno-
typic variation55,56.

Genome sequencing clearly showed protein coding genes have
been directly altered during the development of modern sheep.
Genomic regions with evidence of positive selection were sig-
nificantly enriched for coding exons, and missense (non-synon-
ymous) substitutions were fourfold over represented in sites with
extreme allele frequency differences between wild and domestic
genomes. Sweep regions contained a collection of genes pre-
viously implicated in the control of pigmentation, reproduction
and stature and biological process enrichment was observed for
sexual differentiation and altered timing of reproduction.

A more difficult task has been any detailed evaluation of the
contribution made by sequence elements that regulate gene
expression. To address this we built a comparative functional
annotation of sheep and validated its utility by comparison with
experimentally derived histone modification data identifying
active sheep promoters, enhancers and repressors. Our major
finding is multiple chromatin states and regulatory elements are
strongly enriched in both selective sweeps and sites with diver-
gent allele frequency. Involvement of the gene regulatory
machinery is consistent with the emerging view that complex trait
architecture is often governed by changes in gene expression. For
example, the majority of trait associated SNP in human disease
GWAS fall outside transcribed regions57. Intersecting these
associated SNP with epigenomic marks reveals strong enrichment
within both ENCODE57 and Roadmap genome features12.
Similarly in livestock, testing production trait associated SNP has
revealed enrichment within non-coding elements neighbouring
genes, suggesting a role for variants that influence gene expres-
sion58. Next, evo-devo studies have put forward the relevance of
regulatory mutations affecting morphology, behaviour and
adaptation59,60. Seminal examples include Drosophila wing pig-
ment patterns61 and skeletal reduction in stickleback fish62.
Perhaps of most relevance to animal domestication, analysis of
modern rabbits suggests a strong enrichment has occurred at
conserved non-coding sites expected to be enriched for regulatory
function8. In addition, the earliest stages of trout domestication
are characterised by large, heritable changes to gene expression63.
Our analysis, armed with the extensive epigenomic annotation

described here, finds evidence that remodelled gene regulation
has been a force during the profound morphological, behavioural
and metabolic changes occurring through the transition to a
domesticated state.

The richness of predicted epigenomic feature annotations
allowed us to discriminate between the components of the gene
regulatory apparatus that have been preferentially impacted.
Perhaps surprisingly, active promoters and proximal enhancers
were strongly enriched in both sweep regions and sites with
divergent ΔAF, in contrast to each distal ENCODE mark or
inactive Roadmap chromatin states, such as repressed Polycomb
and constitutive heterochromatin. This suggests remodelling of
control elements immediately adjacent to genes has been a
dominant mechanism of change, however it is currently unknown
why distal elements appear to have made a diminished
contribution.

Most experiments into the consequences of animal domes-
tication and selection have relied on SNP array data and have
focussed on protein coding genes in the absence of functional
annotation3–5. Genome sequencing has dramatically improved
the resolution of selective sweep regions in this study of sheep and
other studies of pigs and chickens6,64,65. Further, our comparative
application of human epigenomic data has proven highly
insightful, however limitations remain. The reciprocal BLAST
methodology may have introduced bias, resulting in an over-
representation of evolutionarily conserved promoter elements
compared with enhancers. Indeed the recovery of enhancers
within sheep ChIP-Seq data was lower than for promoters,
however the difference was not large and enhancers have a higher
evolutionary turnover compared to proximal regulatory elements
or protein-coding sequences48,62,66. Further, it is possible that
species specific and tissue specific regulatory elements are likely to
be under represented as a consequence of both our methodology
and the application of ChIP-Seq using only a single tissue. A
separate note of caution relates to the sampling of animals
sequenced in the study, which is likely to have an impact on the
final collection of sweeps identified as the choice of genomes used
has a measurable impact on allele frequencies (Supplementary
Fig. 15). A final challenge arises from linkage disequilibrium and
the overlapping nature of some genome annotation features,
which together blur the relative contribution of physically co-
located genomic features (Supplementary Fig. 14). A case in point
is the observation that synonymous sites displayed enrichment in
our site frequency analysis. It is not clear if this reflects a func-
tional role for many synonymous positions via cryptic effects on
transcription or mRNA transport as previously suggested67 or if
their proximity to missense mutations has generated the enrich-
ment via linkage disequilibrium. Despite these limitations, the
collection of annotated genome features represents a useful
resource for the research community to interpret GWAS and
inform the design of SNP panels to increase power to deliver
genomic prediction. Knowledge concerning the elements likely to
regulate gene expression enhances our understanding of the sheep
genome, and suggests that remodelling gene expression has been
a key mechanism during the evolution of this important livestock
species.

Methods
Samples. A total of 70 animals were sampled from 43 domestic breeds and sub-
jected to genome sequencing (Supplementary Data 1). These comprise 46 animals
selected from an earlier SNP array based global survey of breed diversity4 and
another six animals used for SNP discovery, construction of the SNP50 BeadChip
and CNV detection. The final group of 18 individuals have not been examined
before. Breeds were drawn from Asia (12), Africa (6), the Middle East (13), the
Americas (8), the United Kingdom (8) and continental Europe (23). Whole-
genome sequence data for 19 Asian mouflon (Ovis orientalis) was collected and
made available by the NEXTGEN project (http://nextgen.epfl.ch/). Fastq files were
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downloaded from the ENA public repository (http://www.ebi.ac.uk:/ena/data/view/
PRJEB3139) and processed as described below for the domestic sheep genomes.

Genome sequencing, variant detection and annotation. Paired-end short insert
libraries were constructed using 5 μg of genomic DNA and sequenced on the
Illumina HiSeq 2000 platform. Reads were mapped against the sheep reference
assembly v3.124 using BWA aligner v0.7.12 (bwa aln + bwa sampe, default para-
meters)68. Animals were sequenced to an average median depth of 11.8 ×
(8.4–17.2×) (Supplementary Data 1). Duplicate reads were removed using Picard
tools (http://broadinstitute.github.io/picard/), and local realignment around
INDELS was performed using GATK v3.2.069. Variant detection and SNP diversity
analyses were performed using SAMTOOLS 1.2.1 mpileup and annotated using
VCFTools v0.1.1470. After obtaining genotype calls for a total of 89 samples the
following filters were applied using a combination of VCFtools70 and in-house
scripts: (i) SNP were retained in positions with read depth between 5× and twice
the average depth per sample; (ii) minimum mapping quality of 30 and base quality
of 20 were applied; (iii) SNP within 5 bp of INDELS were removed; (iv) for SNP
pairs separated by <4 bp, the lower quality variant was excluded; (v) tri-allelic
variants were removed; (vi) SNP called in <90% of animals were excluded and (vii)
SNP displaying an excess of heterozygosity were excluded (--hwe 0.001). This
defined a set of 28,100,631 SNP across domestic (67) and mouflon (17) genomes. A
total of five low-coverage animals were excluded (3 domestic and 2 mouflon).
PLINK v1.9 was used to perform genetic diversity estimates and PCA (https://
www.cog-genomics.org/plink2)71. The variant effect predictor tool from ensembl
(version 78) was used to identify 24 separate SNP classifications, including coding,
missense and non-synonymous substitutions, intron and intergenic, in relation to
the gene models annotated on reference assembly OARv3.124 (Supplementary
Tables 1–2).

Genome scanning for selection sweeps. Population differentiation between wild
and domestic populations were measured as FST using the Weir and Cockerham
method72. Average SNP FST values were plotted in 20 kb genomic bins with a 10 kb
step (Fig. 2a; Supplementary Fig. 2). Nucleotide diversity (π) was estimated for the
same bins in both wild and domestic sheep genome collections as the number of
heterozygous SNP by bin size. Genomic bins with fewer than 20 SNP were
excluded. Positive selection is characterised by reduced π, prompting us to estimate
a ratio (wild/domestic) that identifies the direction of selection9,29. The ratio (wild/
domestic) is given in Fig. 2a and plotted in genomic order (Supplementary Fig. 2).
The genome-wide threshold to declare significance of Z-transformed values (FST>
0.156 and log π ratio >0.672) represents Bonferroni adjusted p-value of <0.01.

Biological process enrichment within selective sweep regions. Locus-based
Gene Ontology enrichment was performed using GREAT v3.0.042. Genomic bins
with evidence of positive selection were translated to human coordinates (GRC37/
hg19) using UCSC’s liftOver tool (minMatch = 0.1)73. The membership and fre-
quency of gene regulatory domains present was then compared against a back-
ground set representing all genomic bins using two statistical tests. A binomial and
a hypergeometric test assessed the enrichment of molecular function terms and
biological process terms. We also used GREAT to interrogate the Mouse Genome
Informatics (MGI) database phenotypes74.

Building a comparative sheep functional annotation. Our approach exploited
the wealth of functional annotation data generated by the Epigenome Roadmap
and ENCODE studies11,12. We performed reciprocal liftOver (minMatch = 0.1)73,
meaning elements that mapped to sheep also needed to map in the reverse
direction back to human with high quality. This bidirectional comparative map-
ping approach was applied to 12 chromatin states defined using 5 core histone
modification marks, H3K4me3, H3K4me1, H3K36me3, H3K9me3 and
H3K27me3. Mapping success is given in Supplementary Table 5. The same
approach was applied to ENCODE marks derived from 94 cell types (https://www.
encodeproject.org/data/annotations/v2/) with DNase-seq and TF ChIP-seq.

ChIP-seq of ovine adipose tissue. Chromatin immunoprecipitation followed by
next generation sequencing (ChIP-Seq) of the histone chromatin modification
H3K4me3, H3K27ac and H3K27me3 was undertaken using late gestation fetal
perirenal adipose tissue (PRAT). This tissue was selected as it may be important in
a production setting, where it influences lamb survival under some circumstances.
All procedures involving animals were carried out with approval from the Uni-
versity of Adelaide Animal Ethics Committee. The adipose tissue was taken at
130 days post conception from three animals for H3K4me3 and two animals for
H3K27ac and H3K27me3. Input nucleosomal DNA from the combined fetal
samples were used as input controls. Nuclei were isolated from 1.2 g of frozen
PRAT by pulverising the tissue under liquid nitrogen at 4°C in Nuclei Buffer (0.3 M
sucrose, 60 mM KCl, 15 mM NaCl, 5 mM MgCl2, 0.1 mM EGTA, 15 mM Tris-HCl,
pH 7.5) with the inclusion of protease inhibitors (0.5 mM DTT, 0.1 mM AEBSF,
CompleteTM EDTA-free protease inhibitor cocktail (Roche Diagnostics GmbH,
Mannheim Germany) using a hand held Dounce homogeniser. The filtered
homogenate was centrifuged (3000×g, 5 min) and the pellet recovered and re-
suspended in ice-cold Nuclei Buffer containing 0.4% IGEPAL CA-630 (Sigma),

incubated on ice for 5 min and the suspension was then layered on a cushion of
Nuclei Buffer containing 1.2 M sucrose. The sample was centrifuged at 10,000×g
(25 min, 4 °C), the chromatin pellet recovered and resuspended in micrococcal
nuclease digestion buffer. The isolated chromatin was treated with micrococcal
nuclease (MNase) (0.2 U/μl) (New England BioLabs, Ipswich, MA, USA) and
soluble chromatin recovered using mild sonication and centrifugation. Specific
antibodies to H3K4me3 (Abcam ab8580) and H3K27ac (Abcam ab4729) and
H3K27me3 (Millipore 07-449) (10 μg per incubation) were used for immunopre-
cipitation (4 °C, gentle mixing, 15 h). Immune complexes were isolated using
Protein A-Sepharose (4 h, 4°C) and washed sequentially with low salt buffers
supplemented with 0.1% NP-40 and a final wash in 1xTE buffer. The chromatin
was released from the Protein A Sepharose using 1% SDS, 0.1 M NaHCO3, treated
with proteinase K, extracted with TE-saturated phenol/chloroform (1:1) and DNA
purified using Minielute DNA columns (Qiagen, Maryland, USA). DNA (20–100
ng) was quantified using Quant-ITTM PicoGreen and validated for purity and size
using a High Sensitivity DNA chip (Agilent 2100 Bioanalyser; Agilent Technolo-
gies, Santa Clara, CA, USA). DNA samples (10 ng) isolated from the immuno-
purified nucleosomes and input nucleosomes were used to generate sequencing
libraries for each sample using the Illumina TruSeq ChIP-Seq kit and these were
sequenced using the Illumina HiSeq2000 (H3K27ac and H3K4me3) platform
(Illumina, San Diego, CA, USA) and Illumina Genome Analyser II (GAII) for
H3K27me3. Approximately 205M 50 bp sequence reads per sample were pro-
duced. Reads were mapped to the unmasked ovine genome sequence (Ovis aries
Oar_v3.1.74) using the NGS core tool mapping application in CLCBIO (mapping
parameters: length fraction = 0.7; similarity fraction = 0.8; penalties, mismatch = 2,
insertion = 3, deletion = 3). A range of 75–90% of reads was uniquely mapped and
retained. Peak calling comparing the H3K4me3 or H3K27ac ChIP-Seq versus the
input control was performed using MACS75. Only peaks found in both replicates
per chromatin mark, either H3K4me3, H3K27ac or H3K27me3, were further
considered. For H3K4me3 there were 16098 peaks with a FDR 0.1%, whereas for
H3K27ac there were 35622 peaks with 1% FDR and for H3K27me3 31942 peaks
with 5% FDR. The number of peaks is comparable to those previously reported for
the same chromatin marks in cattle76.

Validation of the predicted sheep epigenome using ChIP-seq. First, we calcu-
lated the overlap between experimentally observed (ChIP-Seq) sheep enhancer and
promoter elements with our collection of predicted epigenome features. We created
1000 randomisations for each genomic feature using bedtools shuffle (-noO-
verlapping)77. We then calculated overlap for each randomisation against the
experimentally observed (ChIP-Seq) sheep enhancer and promoter elements.
Finally, we counted how many times an equal or greater overlap observed in the
original features were observed in the 1000 randomisations to estimate an
empirical p-value per overlap and feature.

Epigenome feature enrichment within selective sweep regions. The Bio-
conductor package Locus Overlap Analysis (LOLA) was used to assess the rela-
tionship between selection sweeps and genome regions containing functional
annotation49. This process used (i) a ‘query set’ comprising each genome feature
derived from four sources as detailed in Fig. 3a; (ii) a ‘reference set’ of 1420
genomic bins with evidence of selection (Fig. 2a) and (iii) a ‘Universe Set’ con-
taining all 20 kb genome-wide bins. A Fisher’s exact test with false discovery rate
correction was performed to assess the significance of overlap in each pairwise
comparison49.

Analysis of divergent allele frequencies. Allele frequency (AF) was estimated for
each SNP separately for domestic and wild sheep genomes using PLINK V1.9
(--freq –within)71. Next, the difference (ΔAF) was used to identify SNP with
divergent AF between species. SNP was allocated into ΔAF bins and compared
across functional annotation features by using bedtools intersect77. Log2 fold
change of the observed SNP count for each genomic feature in each bin was
compared against the expected SNP count (M-value; average across bins)8,50.
Statistical significance of the deviations from the expected values was tested with a
chi-squared (χ2) test.

Data availability. Genome sequence for each of 68 domestic sheep are available
through the International Sheep Genomics Consortium (http://www.sheephapmap.
org/) with Fastq files deposited in the SRA repository (https://www.ncbi.nlm.nih.
gov/bioproject/160933) and SheepGenomes DB project (http://sheepgenomesdb.
org/) via European Variant Archive (EVA) study PRJEB14685 (http://www.ebi.ac.
uk/ena/data/view/PRJEB14685). Genome sequence for 19 mouflon (Ovis orientalis)
were made available by the NEXTGEN project (http://nextgen.epfl.ch/) with Fastq
files deposited in the ENA public repository as study number PRJEB3139 and
secondary accession ERP001583 (https://www.ebi.ac.uk/ena/data/view/
PRJEB3139). Fetal Perirenal adipose tissue H3K27ac, H3K4me3 ChIP-Seq data are
accessible in the GEO series (GSE90812). Human epigenomic tracks converted to
sheep coordinates are available through CSIRO Data Access Portal https://doi.org/
10.4225/08/5a03a9c39a0ba.
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