113 research outputs found

    KATANA - a charge-sensitive triggering system for the Sπ\piRIT experiment

    Full text link
    KATANA - the Krakow Array for Triggering with Amplitude discrimiNAtion - has been built and used as a trigger and veto detector for the Sπ\piRIT TPC at RIKEN. Its construction allows operating in magnetic field and providing fast response for ionizing particles, giving the approximate forward multiplicity and charge information. Depending on this information, trigger and veto signals are generated. The article presents performance of the detector and details of its construction. A simple phenomenological parametrization of the number of emitted scintillation photons in plastic scintillator is proposed. The effect of the light output deterioration in the plastic scintillator due to the in-beam irradiation is discussed.Comment: 14 pages, 11 figure

    Nano-Architecture of nitrogen-doped graphene films synthesized from a solid CN source

    Get PDF
    New synthesis routes to tailor graphene properties by controlling the concentration and chemical configuration of dopants show great promise. Herein we report the direct reproducible synthesis of 2-3% nitrogen-doped ‘few-layer’ graphene from a solid state nitrogen carbide a-C:N source synthesized by femtosecond pulsed laser ablation. Analytical investigations, including synchrotron facilities, made it possible to identify the configuration and chemistry of the nitrogen-doped graphene films. Auger mapping successfully quantified the 2D distribution of the number of graphene layers over the surface, and hence offers a new original way to probe the architecture of graphene sheets. The films mainly consist in a Bernal ABA stacking three-layer architecture, with a layer number distribution ranging from 2 to 6. Nitrogen doping affects the charge carrier distribution but has no significant effects on the number of lattice defects or disorders, compared to undoped graphene synthetized in similar conditions. Pyridinic, quaternary and pyrrolic nitrogen are the dominant chemical configurations, pyridinic N being preponderant at the scale of the film architecture. This work opens highly promising perspectives for the development of self-organized nitrogen-doped graphene materials, as synthetized from solid carbon nitride, with various functionalities, and for the characterization of 2D materials using a significant new methodology

    Deep Eutectic Solvents (DESs) and their applications [forthcoming]

    Get PDF
    Deep Eutectic Solvents (DESs) and Their Application

    Isoscaling in central Sn+Sn collisions at 270 MeV/u

    Full text link
    Experimental information on fragment emissions is important in understanding the dynamics of nuclear collisions and in the development of transport model simulating heavy-ion collisions. The composition of complex fragments emitted in the heavy-ion collisions can be explained by statistical models, which assume that thermal equilibrium is achieved at collision energies below 100 MeV/u. Our new experimental data together with theoretical analyses for light particles from Sn+Sn collisions at 270 MeV/u, suggest that the hypothesis of thermal equilibrium breaks down for particles emitted with high transfer momentum. To inspect the system's properties in such limit, the scaling features of the yield ratios of particles from two systems, a neutron-rich system of 132Sn+124Sn{}^{132}\mathrm{Sn}+{}^{124}\mathrm{Sn} and a nearly symmetric system of 108Sn+112Sn{}^{108}\mathrm{Sn}+{}^{112}\mathrm{Sn}, are examined in the framework of the statistical multifragmentation model and the antisymmetrized molecular dynamics model. The isoscaling from low energy particles agree with both models. However the observed breakdown of isoscaling for particles with high transverse momentum cannot be explained by the antisymmetrized molecular dynamics model

    Association of CCR2-CCR5 Haplotypes and CCL3L1 Copy Number with Kawasaki Disease, Coronary Artery Lesions, and IVIG Responses in Japanese Children

    Get PDF
    BACKGROUND: The etiology of Kawasaki Disease (KD) is enigmatic, although an infectious cause is suspected. Polymorphisms in CC chemokine receptor 5 (CCR5) and/or its potent ligand CCL3L1 influence KD susceptibility in US, European and Korean populations. However, the influence of these variations on KD susceptibility, coronary artery lesions (CAL) and response to intravenous immunoglobulin (IVIG) in Japanese children, who have the highest incidence of KD, is unknown. METHODOLOGY/PRINCIPAL FINDINGS: We used unconditional logistic regression analyses to determine the associations of the copy number of the CCL3L1 gene-containing duplication and CCR2-CCR5 haplotypes in 133 Japanese KD cases [33 with CAL and 25 with resistance to IVIG] and 312 Japanese controls without a history of KD. We observed that the deviation from the population average of four CCL3L1 copies (i.e., <or>four copies) was associated with an increased risk of KD and IVIG resistance (adjusted odds ratio (OR)=2.25, p=0.004 and OR=6.26, p=0.089, respectively). Heterozygosity for the CCR5 HHF*2 haplotype was associated with a reduced risk of both IVIG resistance (OR=0.21, p=0.026) and CAL development (OR=0.44, p=0.071). CONCLUSIONS/SIGNIFICANCE: The CCL3L1-CCR5 axis may play an important role in KD pathogenesis. In addition to clinical and laboratory parameters, genetic markers may also predict risk of CAL and resistance to IVIG

    The HPV E6 oncoprotein targets histone methyltransferases for modulating specific gene transcription

    Get PDF
    Expression of viral proteins causes important epigenetic changes leading to abnormal cell growth. Whether viral proteins directly target histone methyltransferases (HMTs), a key family enzyme for epigenetic regulation, and modulate their enzymatic activities remains elusive. Here we show that the E6 proteins of both low-risk and high-risk human papillomavirus (HPV) interact with three coactivator HMTs, CARM1, PRMT1 and SET7, and downregulate their enzymatic activities in vitro and in HPV-transformed HeLa cells. Furthermore, these three HMTs are required for E6 to attenuate p53 transactivation function. Mechanistically, E6 hampers CARM1- and PRMT1-catalyzed histone methylation at p53-responsive promoters, and suppresses the binding of p53 to chromatinized DNA independently of E6-mediated p53 degradation. p53 pre-methylated at lysine-372 (p53K372 mono-methylation) by SET7 protects p53 from E6-induced degradation. Consistently, E6 downregulates p53K372 mono-methylation and thus reduces p53 protein stability. As a result of the E6-mediated inhibition of HMT activity, expression of p53 downstream genes is suppressed. Together, our results not only reveal a clever approach for the virus to interfere with p53 function, but also demonstrate the modulation of HMT activity as a novel mechanism of epigenetic regulation by a viral oncoprotein

    A semi-analytic power balance model for low (L) to high (H) mode transition power threshold

    No full text
    We present a semi-analytic model for low (L) to high (H) mode transition power threshold (P-th). Two main assumptions are made in our study. First, high poloidal mode number drift resistive ballooning modes (high-m DRBM) are assumed to be the dominant turbulence driver in a narrow edge region near to last closed flux surface. Second, the pre-transition edge profile and turbulent diffusivity at the narrow edge region pertain to turbulent equipartition. An edge power balance relation is derived by calculating the dissipated power flux through both turbulent conduction and convection, and radiation in the edge region. P-th is obtained by imposing the turbulence quench rule due to sheared E x B rotation. Evaluation of P-th shows a good agreement with experimental results in existing machines. Increase of P-th at low density (i.e., the existence of roll-over density in P-th vs. density) is shown to originate from the longer scale length of the density profile than that of the temperature profile
    corecore