1,608 research outputs found

    MDA in practice (panel)

    Get PDF

    Muller C-element based Decoder (MCD): A Decoder Against Transient Faults

    Get PDF
    This work extends the analysis and application of a digital error correction method called Muller C-element Decoding (MCD), which has been proposed for fault masking in logic circuits comprised of unreliable elements. The proposed technique employs cascaded Muller C-elements and XOR gates to achieve efficient error-correction in the presence of internal upsets. The error-correction analysis of MCD architecture and the investigation of C-element’s robustness are first introduced. We demonstrate that the MCD is able to produce error-correction benefit in a high error-rate of internal faults. Significantly, for a (3,6) short-length LDPC code, when the decoding process is internally error-free the MCD achieves also a gain in terms of decoding performance by comparison to the well-known Gallager Bit-Flipping method. We further consider application of MCD to a general-purpose fault-tolerant model, coded Dual Modular Redundancy (cDMR), which offers low-redundancy error-resilience for contemporary logic systems as well as future nanoeletronic architectures

    Empirical assessment of generating adversarial configurations for software product lines

    Get PDF
    Software product line (SPL) engineering allows the derivation of products tailored to stakeholders’ needs through the setting of a large number of configuration options. Unfortunately, options and their interactions create a huge configuration space which is either intractable or too costly to explore exhaustively. Instead of covering all products, machine learning (ML) approximates the set of acceptable products (e.g., successful builds, passing tests) out of a training set (a sample of configurations). However, ML techniques can make prediction errors yielding non-acceptable products wasting time, energy and other resources. We apply adversarial machine learning techniques to the world of SPLs and craft new configurations faking to be acceptable configurations but that are not and vice-versa. It allows to diagnose prediction errors and take appropriate actions. We develop two adversarial configuration generators on top of state-of-the-art attack algorithms and capable of synthesizing configurations that are both adversarial and conform to logical constraints. We empirically assess our generators within two case studies: an industrial video synthesizer (MOTIV) and an industry-strength, open-source Web-app configurator (JHipster). For the two cases, our attacks yield (up to) a 100% misclassification rate without sacrificing the logical validity of adversarial configurations. This work lays the foundations of a quality assurance framework for ML-based SPLs

    ATLAS Distributed Data management Operations

    Get PDF
    ATLAS Distributed Data Management (DDM) service is developed for data transfer between ATLAS sites and for data cataloguing. The Data Management Software (SW) is based on DQ2 and end-users tools (aka dq2_get package). In this paper we address the issue of DDM day-by-day operation, DDM operations team organization, roles and responsibilities of Tier-1s and Tier-2s DDM coordinators

    Electrical detection of spin accumulation in a p-type GaAs quantum well

    Full text link
    We report on experiments in which a spin-polarized current is injected from a GaMnAsGaMnAs ferromagnetic electrode into a GaAsGaAs quantum well through an AlAs barrier. The resulting spin polarization in the GaAs well is detected by measuring how the current, tunneling to a second GaMnAsGaMnAs ferromagnetic electrode, depends on the orientation of its magnetization. Our results can be accounted for the non-relaxed spin splitting of the chemical potential, that is spin accumulation, in the GaAsGaAs well. We discuss the conditions on the hole spin relaxation time in GaAs that are required to obtain the large effects we observe.Comment: 4 pages - 2 figues; one added note; some numbers corrected on page

    Center manifold and multivariable approximants applied to non-linear stability analysis

    Full text link
    This paper presents a research devoted to the study of instability phenomena in non-linear model with a constant brake friction coefficient. This paper outlines the stability analysis and a procedure to reduce and simplify the non-linear system, in order to obtain limit cycle amplitudes. The center manifold approach, the multivariable approximants theory, and the alternate frequency/time domain (AFT) method are applied. Brake vibrations, and more specifically heavy trucks grabbing are concerned. The modelling introduces sprag-slip mechanism based on dynamic coupling due to buttressing. The non-linearity is expressed as a polynomial with quadratic and cubic terms. This model does not require the use of brake negative coefficient, in order to predict the instability phenomena. Finally, the center manifold approach, the multivariable approximants, and the AFT method are used in order to obtain equations for the limit cycle amplitudes. These methods allow the reduction of the number of equations of the original system in order to obtain a simplified system, without loosing the dynamics of the original system, as well as the contributions of non-linear terms. The goal is the validation of this procedure for a complex non-linear model by comparing results obtained by solving the full system and by using these methods. The brake friction coefficient is used as an unfolding parameter of the fundamental Hopf bifurcation point

    Breakdown of Conformal Invariance at Strongly Random Critical Points

    Full text link
    We consider the breakdown of conformal and scale invariance in random systems with strongly random critical points. Extending previous results on one-dimensional systems, we provide an example of a three-dimensional system which has a strongly random critical point. The average correlation functions of this system demonstrate a breakdown of conformal invariance, while the typical correlation functions demonstrate a breakdown of scale invariance. The breakdown of conformal invariance is due to the vanishing of the correlation functions at the infinite disorder fixed point, causing the critical correlation functions to be controlled by a dangerously irrelevant operator describing the approach to the fixed point. We relate the computation of average correlation functions to a problem of persistence in the RG flow.Comment: 9 page

    Design by Contract to Improve Software Vigilance

    Full text link

    Relationship Between Serum NMDA Receptor Antibodies and Response to Antipsychotic Treatment in First-Episode Psychosis

    Get PDF
    Background: When psychosis develops in NMDA receptor (NMDAR) antibody encephalitis, it usually has an acute or subacute onset, and antipsychotic treatment may be ineffective and associated with adverse effects. Serum NMDAR antibodies have been reported in a minority of patients with first-episode psychosis (FEP), but their role in psychosis onset and response to antipsychotic treatment is unclear. Methods: Sera from 387 patients with FEP (duration of psychosis <2 years, minimally or never treated with antipsychotics) undergoing initial treatment with amisulpride as part of the OPTiMiSE (Optimization of Treatment and Management of Schizophrenia in Europe) trial (ClinicalTrials.gov number NCT01248195) were tested for NMDAR IgG antibodies using a live cell–based assay. Symptom severity was assessed using the Positive and Negative Syndrome Scale and the Clinical Global Impressions Scale at baseline and again after 4 weeks of treatment with amisulpride. Results: At baseline, 15 patients were seropositive for NMDAR antibodies and 372 were seronegative. The seropositive patients had similar symptom profiles and demographic features to seronegative patients but a shorter duration of psychosis (median 1.5 vs. 4.0 months; p =.031). Eleven seropositive and 284 seronegative patients completed 4 weeks of amisulpride treatment: after treatment, there was no between-groups difference in improvement in Positive and Negative Syndrome Scale scores or in the frequency of adverse medication effects. Conclusions: These data suggest that in FEP, NMDAR antibody seropositivity alone is not an indication for using immunotherapy instead of antipsychotic medications. Further studies are required to establish what proportion of patients with FEP who are NMDAR antibody seropositive have coexisting cerebrospinal fluid inflammatory changes or other paraclinical evidence suggestive of a likely benefit from immunotherapy

    A topological Dirac insulator in a quantum spin Hall phase : Experimental observation of first strong topological insulator

    Get PDF
    When electrons are subject to a large external magnetic field, the conventional charge quantum Hall effect \cite{Klitzing,Tsui} dictates that an electronic excitation gap is generated in the sample bulk, but metallic conduction is permitted at the boundary. Recent theoretical models suggest that certain bulk insulators with large spin-orbit interactions may also naturally support conducting topological boundary states in the extreme quantum limit, which opens up the possibility for studying unusual quantum Hall-like phenomena in zero external magnetic field. Bulk Bi1−x_{1-x}Sbx_x single crystals are expected to be prime candidates for one such unusual Hall phase of matter known as the topological insulator. The hallmark of a topological insulator is the existence of metallic surface states that are higher dimensional analogues of the edge states that characterize a spin Hall insulator. In addition to its interesting boundary states, the bulk of Bi1−x_{1-x}Sbx_x is predicted to exhibit three-dimensional Dirac particles, another topic of heightened current interest. Here, using incident-photon-energy-modulated (IPEM-ARPES), we report the first direct observation of massive Dirac particles in the bulk of Bi0.9_{0.9}Sb0.1_{0.1}, locate the Kramers' points at the sample's boundary and provide a comprehensive mapping of the topological Dirac insulator's gapless surface modes. These findings taken together suggest that the observed surface state on the boundary of the bulk insulator is a realization of the much sought exotic "topological metal". They also suggest that this material has potential application in developing next-generation quantum computing devices.Comment: 16 pages, 3 Figures. Submitted to NATURE on 25th November(2007
    • 

    corecore