
Muller C-element based Decoder (MCD):
A Decoder Against Transient Faults

Yangyang Tang⇤†, Emmanuel Boutillon⇤, Chris Winstead†, Christophe Jégo‡ and Michel Jézéquel§
⇤Université de Bretagne Sud, UMR CNRS 3192 Lab-STICC, Lorient, France

†Dept. of Electrical and Computer Engineering, Utah State University, Logan, Utah 84322
‡Institut Polytechnique Bordeaux, UMR CNRS 5218 Lab-IMS, Bordeaux, France

§Institut TELECOM/TELECOM Bretagne, UMR CNRS 3192 Lab-STICC, Brest, France
Email: yangyang.tang@univ-ubs.fr

Abstract— This work extends the analysis and application
of a digital error correction method called Muller C-element
Decoding (MCD), which has been proposed for fault masking
in logic circuits comprised of unreliable elements. The proposed
technique employs cascaded Muller C-elements and XOR gates
to achieve efficient error-correction in the presence of internal
upsets. The error-correction analysis of MCD architecture and
the investigation of C-element’s robustness are first introduced.
We demonstrate that the MCD is able to produce error-correction
benefit in a high error-rate of internal faults. Significantly, for
a (3,6) short-length LDPC code, when the decoding process is
internally error-free the MCD achieves also a gain in terms
of decoding performance by comparison to the well-known
Gallager Bit-Flipping method. We further consider application
of MCD to a general-purpose fault-tolerant model, coded Dual
Modular Redundancy (cDMR), which offers low-redundancy
error-resilience for contemporary logic systems as well as future
nanoeletronic architectures.

I. INTRODUCTION

Due to the rapid development of logic circuit manufac-
turing in the last two decades, electronic devices are now
miniaturized to nanoscale dimensions. Nanoscale devices are
increasingly sensitive to faults due to manufacturing defects,
environmental fluctuations, and electronic noise or interfer-
ence. From the circuit perspective, semiconductor faults fall
into three main categories: permanent, intermittent, and tran-
sient. Permanent faults are caused by manufacturing defects,
or device wear-out. They reflect irreversible physical changes.
Intermittent faults occur because of unstable or marginal
hardware; they can be activated and later reversed by environ-
mental changes, like higher or lower temperature and voltage
[1]. Transient defects occur on a shorter time-scale, arising
from device noise, interference or particle interactions. Due
to the size downscaling processes, digital logic circuits are
increasingly vulnerable to the transient faults [2].

Since any embedded fault-masking solution is implemented
using the same device as the logic it protects, it is important for
a fault-masking technique to be also tolerant of internal errors
within its own logic. Researchers previously investigated the
performance of a variety of error-correcting schemes under
the influence of intrinsic faults [3]–[7]. In many cases, the
proposed fault-masking solutions are limited to particular ap-
plications or algorithms. For example, an Algorithmic Noise-
Tolerance (ANT) technique was introduced by Shim et al.,

for reliable low-power digital signal processing [3]. The ANT
method is based on a reduced precision replica to achieve
redundancy in certain DSP algorithms. However, the ANT
method is difficult to adapt if the reduced precision block
cannot be realized in a feasible way. An Error Resilient
System Architecture (ERSA) [4] was proposed for low-cost
robust systems, but incurs higher costs for general-purpose
applications. Thus, the need of an efficient general-purpose
fault-tolerant design is evident.

In the authors’ previous work [8], [9], an error-correction
method based on Muller C-elements was introduced and
shown to be robust against internal transient faults. This
method, referred as to MCD, is an implementation of iterative
Low Density Parity Check (LDPC) [10] decoders suitable for
embedding into digital logic circuits. The MCD method con-
sists primarily of C-elements and XOR gates which implement
a parity-check decoding algorithm. The MCD differs from
traditional parity-check algorithms in that its circuit topology
is designed to suppress internal upsets within the decoder.

In this paper, an extended work of MCD technique and
its implementation for embedded robust design are detailed.
The main contributions of this work are threefold: First
the error-correction analysis of MCD is shown. Second, the
study of error-resilience capacity inherited by C-element is
detailed. Lastly, we study a coded Dual Modular Redundancy
(cDMR) application with a short length MCD, which achieves
a significant gain in terms of decoding performance for both
error-free and noisy decoding cases.

II. BIT-FLIPPING METHOD AND MCD ARCHITECTURE

A. Gallager’s Bit-Flipping Method

LDPC decoding methods are traditionally described as
message-passing on a code’s Tanner graph [11]. The Tanner
graph contains two sets of nodes – variable nodes vi and
parity-check nodes pj . Some edges connect the variable nodes
to the parity-check nodes thanks to a sparse parity-check
matrix associated to each LDPC code. The degree of a node
is the number of edges connected to it in the Tanner graph.
Let dv be the degree of variable node vi, and let Vi be the
set of edges that are connected to vi. Similarly, let dc be the
degree of parity-check node pj , and let Pj be the set of edges
that are connected to pj . During the decoding process, binary

messages are exchanged between the two sets of nodes. The
message passed from node vi to pj is written yij , and the
returning message from pj to vi is written fji. All nodes are
simple processing functions that follow the standard extrinsic
information principle: the outgoing message on edge k is
computed using information from all edges except k.

Gallager’s Bit-Flipping Methods (GBF) were among the
first LDPC decoding algorithms introduced by Gallager [10].
The GBF methods are defined for frames that were transmitted
over a Binary Symmetric Channel (BSC), as a binary hard
decision message-passing decoding method [12]. A GBF algo-
rithm can be described as follows. The variable nodes initially
transmit messages yij = xi for all i, j. For each parity-check
node, the outgoing message on edge k is equal to the modulo-
2 sum of all local incoming messages (excluding edge k). For
the variable nodes, the outgoing message along edge k is equal
to xi unless at least b incoming messages (excluding edge k)
disagree with the xi. Traditionally, there are two versions of
the algorithm. When b = (dv�1), all local incoming messages
are required to be unanimous, the method is known as the
Gallager-A algorithm. If b is fixed to a smallest integer during
the decoding iteration as explained in [10] and [12], then the
method is known as the Gallager-B algorithm.

B. The MCD Architecture

The MCD architecture is characterized by the processing
steps applied at the variable nodes. For each variable node vi,
a set of C-element gates Ck, 0 k < (dv � 1), is associated
as shown in Fig. 1 [8]. The circuit is a cascade of C-element
gates, modified for the initialization of the state memory. In
this figure, dv = 4. Each C-element has three inputs; the left-
side inputs are the usual inputs, and the top-side input is the
initial state for the C-element’s memory. Each C-element gate
Ck contains a single-bit storage element ck. Moreover, a table
that illustrates the behaviors of ck is given. The MCD decoding
algorithm is described as follows:

1) Initialize yk = xi, for all k 2 V .
2) Compute fji = �m2Pj\iymj for all j 2 P .
3) Initialize each C-element memory as ck = fk0 , where

k0 = (k + dv � 1) mod dv .
4) The C-element’s port connections are as follows. For

C0, the inputs are f0 (f0 = xi) and f1, and the output
is c0. For Ck, the inputs are ck�1 and fk+1, and the
output is ck.

5) Iterate steps 2 and 4 during a fixed number of iterations,
as the restoration phase. Note that the initialization in
step 3 is performed only during the first iteration.

6) The corrected output is zi = c(dv�1).
This algorithm is guaranteed to correct a single error during

each iteration. It can also correct many multi-error patterns as
well [8], [9]. The MCD method can be regarded as a circuit-
level implementation for variable nodes in an LDPC decoder.

III. ERROR-CORRECTION ANALYSIS

An error obtained from fk may originate from an internal
error within the decoder. The C-element cascade helps to stop

Fig. 1: Local implementation of a variable node.

the propagation of such errors. For example, if a transient upset
occurs in one of the C-element’s state memories, this error is
masked by the subsequent C-element in the cascade. As the
error-correction analysis done in [9], a single error event can
be masked during an iteration. In the rest of this subsection
we study the cases of double-error events in restoration phase
during an iteration.

A. Double errors appear at fk and fl

If a variable node vi receives two erroneous messages at fk
and fl, such that |k � l| � 1, there are three possible cases:

• If f0 and f1 are erroneous, the output of C0 is thus
erroneous. Since the rest of fk and storages are correct,
the error from C0 is masked.

• f0 and fk (k > 1) are incorrect. In this case, the output
of C0 is correct, and any erroneous fk can’t induce an
error event.

• fk and fl, (k 6= l 6= 0), are erroneous. In this case, any
single error event is waived.

B. Double errors appear at ck and cl

If a variable node vi generated two upsets at ck and cl, such
that |k � l| � 1, these events can be sorted as a single error
event occurrence. Consequently, these cases are masked by the
inherent fault-tolerance by C-element.

C. Double errors appear at fk and cl

If two upsets occur at fk and cl of a variable node vi, where
|k � l| � 0, three cases are possible:

• if k = (dv � 1) and l 6= (dv � 2), the value of C-
element Cl, cl, is correct. Since only single-error event
is occurred among the C-elements except Cl, due to C-
element’s behavior another input of Cl is assured error-
free. In this case, only fk is erroneous that can not induce
an error at the output.

• When k 6= (dv � 1) and l 6= (dv � 2), fk and cl are
correct. Hence, the output from vi is correct as well.

• At last, if k = (dv � 1) and l = (dv � 2), fk and cl are
thus incorrect. In this case, the output is erroneous.

To sum up, a cascaded C-element set is able to correct any
single error event regardless of where those errors originate.
Any double-error events can be corrected, except a single
pattern, namely the local incoming message to the last C-
element and its storage are simultaneously flipped over. For the
burst errors, the C-element set can also correct some patterns.

0 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 100015002000
10−3

10−2

10−1

100

Noise Scale

Er
ro

r R
at

e

State Memory
Static Gate

Fig. 2: Simulated error rate results obtained using the 0.6µm
CMOS model in Virtuoso Spectre.

IV. FAULT-TOLERANCE INHERITED BY C-ELEMENT

To further reveal the error-resilience inherited from C-
element, we study the reliability of a state memory of C-
element by comparison to a static logic gate, namely an
inverter. Without loss of generality, the state memory was
designed for a 0.6µm CMOS logic process. For comparison,
an inverter was also designed. Both circuits were simulated
in Virtuoso Spectre from Cadence, where signal errors are
set up in a large scale by the “noisescale” parameter. Fig. 2
shows an overlay of Monte Carlo transient simulation runs
form both the state memory and the static gate simulations.
The “noisescale” parameter is set as large scale in order to
induce enough upset cases to measure and compare the error
rate for those two components. An error occurs whenever the
difference crosses 0.05V threshold when 5V as the correct
output. For the static logic gate, errors appear quite frequently
as indicated by numerous threshold-crossings. By contrast,
in the state memory case, the amplitude of output noise
fluctuations is significantly cutoff, up to a magnitude of two
orders as the robustness gain as shown in Fig. 2. Consequently,
by comparison to a static logic gate, C-element is able to
tolerates the upset events with error-resilience gain up to
magnitude of two orders.

V. THE CDMR TECHNIQUE BY APPLYING MCD

A. cDMR Technique

One of the authors (Winstead) proposed an LDPC-coded
Fault Compensation Technique (LFCT) in [6]. This technique
is relevant to higher LDPC codes resulting in a more powerful
error-correcting ability. With taking the principle of LFCT, a
coded Dual-Modular Redundancy (cDMR) technique can be
defined as shown in Fig. 3. More detailed can also be found
in [8] and [9]. A logic function F (u) is implemented using a
digital CMOS technology that is subject to errors at its output.
The original function F (u) is augmented by the addition of
a redundant parity-generator module, H · F (u), where H

Original Function
F (u)

Parity-Mapped
Function
H · F (u)

ECC
s

r

ŝ
r̂

�

Fig. 3: Architecture of the cDMR model.

represents the encoding function that generates parity bits
codeword space at the output of F (u) as explained in [6]. The
systematic output word s is then concatenated with the parity
outputs r from H ·F (u), yielding a complete codeword [s r].
According to the code’s H matrix, namely the parity-check
matrix that defines the error-correction code, an Error Control
Codes (ECC) is supposed to perform the error-correction in
the presence of internal faults.

B. Good Decoder Candidate for the ECC of cDMR

In this subsection, we demonstrate a good candidate for
the ECC of cDMR. By comparison to the GBF approach, the
performance improvement achieved with MCD was analyzed
using two metrics: the BER performances over BSC under a
error-free decoding process and faulty decoding process. For
the sake of facility, only LDPC code with dv = 3 is studied.

A (3,6) LDPC code of length 64 was simulated over
BSC in the cases of error-free and noisy decoding process,
respectively, as shown in Fig. 4. First, in the case of noisy
decoding as dashed curves, the GBF performance worsens
with increased iterations, but MCD does not suffer from this
degradation. Significantly, when the length of a LDPC code
is short, the MCD performs a gain in terms of decoding
performance, as shown the solid curves in Fig. 4. As such,
this short MCD decoder is a good candidate to the ECC
block. Consequently, with employing the MCD architecture,
the cDMR technique that can prevent the internal upsets
provides a general-purpose robust system to logic design.

VI. DISCUSSION: CDMR’S IMPLEMENTATION

In order to avoid the occurrence of correlated errors among
the outputs of H ·F (u), the most reliable approach is regarded
in two cases: if F (u) has low complexity, such like finite-
state machines, H · F (x) then can be easily designed; if
F (u) has a high complexity and large fanin and fanout, a
flat truth-table synthesis can be used, as is done with cross-
bar logic arrays [13]. To explain this constraint, we may
contrast the two circuits shown in Fig. 5. In Fig. 5(a), a ripple-
carry implementation, a single gate error may propagate to the
several of the output signals. An example of error propagation
is indicated by the ? symbol in Fig. 5(a). In the cDMR system,
error-propagation may induce many simultaneous faults in the
[s r] codeword, which are not likely to be correctable.

In the crossbar implementation, as shown in Fig. 5(b), logic
is implemented by fabrics of AND-logic and OR-logic. The
“dots” indicate the placement of junctions which physically
implement the logic operations. In this style of implementa-
tion, every operation is associated with only a single output. If

10

�4
10

�3
10

�2
10

�1
10

�6

10

�5

10

�4

10

�3

10

�2

10

�1

BSC Parameter

B
ER

Error-Free, (solid) and Faulty Decoding, internal fault rate 0.0001 (dashed)

20-Iteration GBF
2-Iteration GBF
20-Iteration MCD
2-Iteration MCD

Fig. 4: Simulation results of (3,6) LDPC code of length 64
under faulty and error-free decoding.

a momentary fault occurs at some junction, it will propagate
only to a single output. This implementation guarantees that
single-error events are correctable. The major disadvantage of
crossbar logic is that the operation counts are not optimal. The
crossbar adder in Fig. 5(b), for instance, is composed of 57
separate operations. Crossbar logic does not generally obtain
minimized gate complexity, but it offers improved reliability
by eliminating error propagations.

VII. CONCLUSION

The Muller C-element based Decoder, referred as to MCD,
has been proposed for efficient error-correction in the presence
of high error rate internal upsets. In this work, an extended
study of MCD is presented. The error-correction analysis of
MCD and the study of C-element’s fault-tolerance are first
introduced. By comparison to the well-known Gallager’s Bit-

Flipping method, for a (3,6) LDPC code of short length, the
MCD yields a gain in terms of decoding performance in the
cases of error-free and faulty decoding. At last, by applying
the MCD, a coded Dual-Modular Redundancy (cDMR) tech-
nique designed for robust hard-on to current logic or future
nanoelectronics is optimized.

ACKNOWLEDGMENT

This work was supported by the US National Science
Foundation under award ECCS-0954747 and CCF-0916105.

REFERENCES

[1] F. K. E.H. Neto and G. Wirth, “Tbulk-bics: A built-in current sensor
robust to process and temperature variations for soft error detection,”
IEEE Transactions on Nulcear Science, vol. 55, pp. 2281–2288, 2008.

[2] R. C. Baumann, “Soft errors in advanced semiconductor devices-part i:
the three radiation sources,” IEEE Transactions on Device and Materials

Reliability, vol. 1, no. 1, pp. 17–22, 2001.
[3] B. Shim and N. Shanbhag, “Energy-efficient soft error-tolerant digital

signal processing,” Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, vol. 14, no. 4, pp. 336 –348, april 2006.

(a)

(b)

Fig. 5: Implementations of a two-bit binary adder function,
representing a traditional ripple-carry design (a), and a cross-
bar design suitable for some nanoelectronic device families
(b). The ‘?’ symbol indicates the occurrence of an error which
propagates to multiple signals.

[4] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “Ersa: error
resilient system architecture for probabilistic applications,” in Proceed-

ings of the Conference on Design, Automation and Test in Europe, ser.
DATE ’10, 2010, pp. 1560–1565.

[5] C. Winstead, Y. Luo, E. Monzon, and A. Tejeda, “An error correction
method for binary and multiple-valued logic,” Multiple-Valued Logic,

IEEE International Symposium on, pp. 105–110, 2011.
[6] C. Winstead and S. Howard, “Probabilistic LDPC-coded fault compen-

sation technique for reliable nanoscale computing,” IEEE Transactions

on Circuits and Systems II – Express Briefs, vol. 56, no. 6, pp. 484–488,
June 2009.

[7] Y. Tang, E. Boutillon, C. Jégo, and M. Jézéquel, “A new single-error
correction scheme based on self-diagnosis residue number arithmetic,”
in DASIP, 2010, pp. 27–33.

[8] Y. Tang, C. Winstead, E. Boutillon, C. Jégo, and M. Jézéquel, “An ldpc
decoding method for fault-tolerant digital logic,” in Circuits and Systems

(ISCAS), 2012 IEEE International Symposium on, may 2012, pp. 3025
–3028.

[9] C. Winstead, Y. Tang, E. Boutillon, C. Jégo, and M. Jézéquel, “A space-
time redundancy technique for embedded stochastic error correction,” in
Turbo Codes and Related Topics, 2012 7th International Symposium on,
Aug. 2012.

[10] R. Gallager, Low Density Parity Check Codes. MIT Press, 1963.
[11] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-

product algorithm,” IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 498–519, 2001.

[12] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Transactions on

Information Theory, vol. 42, no. 2, pp. 599–618, 2001.
[13] W. Rao, A. Orailoglu, and R. Karri, “Logic mapping in crossbar-based

nanoarchitectures,” Design Test of Computers, IEEE, vol. 26, no. 1, pp.
68 –77, jan.-feb. 2009.

