93 research outputs found

    Activity-Centric Computing Systems

    Get PDF
    • Activity-Centric Computing (ACC) addresses deep-rooted information management problems in traditional application centric computing by providing a unifying computational model for human goal-oriented ‘activity,’ cutting across system boundaries. • We provide a historical review of the motivation for and development of ACC systems, and highlight the need for broadening up this research topic to also include low-level system research and development. • ACC concepts and technology relate to many facets of computing; they are relevant for researchers working on new computing models and operating systems, as well as for application designers seeking to incorporate these technologies in domain-specific applications

    Activity-based computing: computational management of activities reflecting human intention

    Get PDF
    An important research topic in artificial intelligence is automatic sensing and inferencing of contextual information, which is used to build computer models of the user’s activity. One approach to build such activity-aware systems is the notion of activity-based computing (ABC). ABC is a computing paradigm that has been applied in personal information management applications as well as in ubiquitous, multidevice, and interactive surface computing. ABC has emerged as a response to the traditional application- and file-centered computing paradigm, which is oblivious to a notion of a user’s activity context spanning heterogeneous devices, multiple applications, services, and information sources. In this article, we present ABC as an approach to contextualize information, and present our research into designing activity-centric computing technologies

    Task and Interruption Management in Activity-Centric Computing

    Get PDF

    A survey and comparison of contemporary algorithms for computing the matrix geometric mean

    Get PDF
    In this paper we present a survey of various algorithms for computing matrix geometric means and derive new second-order optimization algorithms to compute the Karcher mean. These new algorithms are constructed using the standard definition of the Riemannian Hessian. The survey includes the ALM list of desired properties for a geometric mean, the analytical expression for the mean of two matrices, algorithms based on the centroid computation in Euclidean (flat) space, and Riemannian optimization techniques to compute the Karcher mean (preceded by a short introduction into differential geometry). A change of metric is considered in the optimization techniques to reduce the complexity of the structures used in these algorithms. Numerical experiments are presented to compare the existing and the newly developed algorithms. We conclude that currently first-order algorithms are best suited for this optimization problem as the size and/or number of the matrices increase. Copyright © 2012, Kent State University

    Design of Functionalized Lipids and Evidence for Their Binding to Photosystem II Core Complex by Oxygen Evolution Measurements, Atomic Force Microscopy, and Scanning Near-Field Optical Microscopy

    Get PDF
    AbstractPhotosystem II core complex (PSII CC) absorbs light energy and triggers a series of electron transfer reactions by oxidizing water while producing molecular oxygen. Synthetic lipids with different alkyl chains and spacer lengths bearing functionalized headgroups were specifically designed to bind the QB site and to anchor this large photosynthetic complex (240 kDa) in order to attempt two-dimensional crystallization. Among the series of different compounds that have been tested, oxygen evolution measurements have shown that dichlorophenyl urea (DCPU) binds very efficiently to the QB site of PSII CC, and therefore, that moiety has been linked covalently to the headgroup of synthetic lipids. The analysis of the monolayer behavior of these DCPU-lipids has allowed us to select ones bearing long spacers for the anchoring of PSII CC. Oxygen evolution measurements demonstrated that these long-spacer DCPU-lipids specifically bind to PSII CC and inhibit electron transfer. With the use of atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM), it was possible to visualize domains of PSII CC bound to DCPU-lipid monolayers. SNOM imaging has enabled us to confirm that domains observed by AFM were composed of PSII CC. Indeed, the SNOM topography images presented similar domains as those observed by AFM, but in addition, it allowed us to determine that these domains are fluorescent. Electron microscopy of these domains, however, has shown that the bound PSII CC was not crystalline

    Predicting hospitalisation-associated functional decline in older patients admitted to a cardiac care unit with cardiovascular disease: a prospective cohort study

    Get PDF
    Up to one in three of older patients who are hospitalised develop functional decline, which is associated with sustained disability, institutionalisation and death. This study developed and validated a clinical prediction model that identifies patients who are at risk for functional decline during hospitalisation. The predictive value of the model was compared against three models that were developed for patients admitted to a general medical ward.; A prospective cohort study was performed on two cardiac care units between September 2016 and June 2017. Patients aged 75 years or older were recruited on admission if they were admitted for non-surgical treatment of an acute cardiovascular disease. Hospitalisation-associated functional decline was defined as any decrease on the Katz Index of Activities of Daily Living between hospital admission and discharge. Predictors were selected based on a review of the literature and a prediction score chart was developed based on a multivariate logistic regression model.; A total of 189 patients were recruited and 33% developed functional decline during hospitalisation. A score chart was developed with five predictors that were measured on hospital admission: mobility impairment = 9 points, cognitive impairment = 7 points, loss of appetite = 6 points, depressive symptoms = 5 points, use of physical restraints or having an indwelling urinary catheter = 5 points. The score chart of the developed model demonstrated good calibration and discriminated adequately (C-index = 0.75, 95% CI (0.68-0.83) and better between patients with and without functional decline (chi; 2; = 12.8, p = 0.005) than the three previously developed models (range of C-index = 0.65-0.68).; Functional decline is a prevalent complication and can be adequately predicted on hospital admission. A score chart can be used in clinical practice to identify patients who could benefit from preventive interventions. Independent external validation is needed
    corecore