1,127 research outputs found

    Hopelessly Mortal: The Role of Mortality Salience, Immortality and Trait Self-esteem in Personal Hope

    Get PDF
    Do people lose hope when thinking about death? Based on Terror Management Theory, we predicted that thoughts of death (i.e., mortality salience) would reduce personal hope for people low, but not high, in self-esteem, and that this reduction in hope would be ameliorated by promises of immortality. In Studies 1 and 2, mortality salience reduced personal hope for people low in self-esteem, but not for people high in self-esteem. In Study 3, mortality salience reduced hope for people low in self-esteem when they read an argument that there is no afterlife, but not when they read “evidence” supporting life after death. In Study 4, this effect was replicated with an essay affirming scientific medical advances that promise immortality. Together, these findings uniquely demonstrate that thoughts of mortality interact with trait self-esteem to cause changes in personal hope, and that literal immortality beliefs can aid psychological adjustment when thinking about death. Implications for understanding personal hope, trait self-esteem, afterlife beliefs and terror management are discussed

    Simultaneous Anaerobic and Aerobic Ammonia and Methane Oxidation under Oxygen Limitation Conditions

    Get PDF
    Methane and ammonia have to be removed from wastewater treatment effluent in order to discharge it to receiving water bodies. A potential solution for this is a combination of simultaneous ammonia and methane oxidation by anaerobic ammonia oxidation (anammox) bacteria and nitrite/nitrate-dependent anaerobic methane oxidation (N-damo) microorganisms. When applied, these microorganisms will be exposed to oxygen, but little is known about the effect of a low concentration of oxygen on a culture containing these microorganisms. In this study, a stable coculture containing anammox and N-damo microorganisms in a laboratory scale bioreactor was established under oxygen limitation. Membrane inlet mass spectrometry (MIMS) was used to directly measure the in situ simultaneous activity of N-damo, anammox, and aerobic ammonia-oxidizing microorganisms. In addition, batch tests revealed that the bioreactor also harbored aerobic methanotrophs and anaerobic methanogens. Together with fluorescence in situ hybridization (FISH) analysis and metagenomics, these results indicate that the combination of N-damo and anammox activity under the continuous supply of limiting oxygen concentrations is feasible and can be implemented for the removal of methane and ammonia from anaerobic digester effluents. IMPORTANCE Nitrogen in wastewater leads to eutrophication of the receiving water bodies, and methane is a potent greenhouse gas; it is therefore important that these are removed from wastewater. A potential solution for the simultaneous removal of nitrogenous compounds and methane is the application of a combination of nitrite/ nitrate-dependent methane oxidation (N-damo) and anaerobic ammonia oxidation (annamox). In order to do so, it is important to investigate the effect of oxygen on these two anaerobic processes. In this study, we investigate the effect of a continuous oxygen supply on the activity of an anaerobic methane- and ammonia-oxidizing coculture. The findings presented in this study are important for the potential application of these two microbial processes in wastewater treatment

    Having a lot of a good thing: multiple important group memberships as a source of self-esteem.

    Get PDF
    Copyright: © 2015 Jetten et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedMembership in important social groups can promote a positive identity. We propose and test an identity resource model in which personal self-esteem is boosted by membership in additional important social groups. Belonging to multiple important group memberships predicts personal self-esteem in children (Study 1a), older adults (Study 1b), and former residents of a homeless shelter (Study 1c). Study 2 shows that the effects of multiple important group memberships on personal self-esteem are not reducible to number of interpersonal ties. Studies 3a and 3b provide longitudinal evidence that multiple important group memberships predict personal self-esteem over time. Studies 4 and 5 show that collective self-esteem mediates this effect, suggesting that membership in multiple important groups boosts personal self-esteem because people take pride in, and derive meaning from, important group memberships. Discussion focuses on when and why important group memberships act as a social resource that fuels personal self-esteem.This study was supported by 1. Australian Research Council Future Fellowship (FT110100238) awarded to Jolanda Jetten (see http://www.arc.gov.au) 2. Australian Research Council Linkage Grant (LP110200437) to Jolanda Jetten and Genevieve Dingle (see http://www.arc.gov.au) 3. support from the Canadian Institute for Advanced Research Social Interactions, Identity and Well-Being Program to Nyla Branscombe, S. Alexander Haslam, and Catherine Haslam (see http://www.cifar.ca)

    Lignipirellula cremea gen. nov., sp. nov., a planctomycete isolated from wood particles in a brackish river estuary

    Get PDF
    A novel planctomycetal strain, designated Pla85_3_4τ^{τ}, was isolated from the surface of wood incubated at the discharge of a wastewater treatment plant in the Warnow river near Rostock, Germany. Cells of the novel strain have a cell envelope architecture resembling that of Gram-negative bacteria, are round to pear-shaped (length: 2.2 ± 0.4 μm, width: 1.2 ± 0.3 μm), form aggregates and divide by polar budding. Colonies have a cream colour. Strain Pla85_3_4τ^{τ} grows at ranges of 10–30 °C (optimum 26 °C) and at pH 6.5–10.0 (optimum 7.5), and has a doubling time of 26 h. Phylogenetically, strain Pla85_3_4τ^{τ} (DSM 103796τ^{τ} = LMG 29741τ^{τ}) is concluded to represent a novel species of a novel genus within the family Pirellulaceae, for which we propose the name Lignipirellula cremea gen. nov., sp. nov

    The difficulty of recognising less obvious forms of group-based discrimination

    Get PDF
    Research on perceptions of discrimination has focused on group-based differential treatment that is widely accepted as being illegitimate (e.g., based on race or gender). The present research investigates how individuals interpret less obvious forms of group-based exclusion based on age (Study 1) and vision correction status (Study 2). We propose that individuals will not question the legitimacy of such treatment, unless they are provided with explicit cues to do so. Participants who merely encountered exclusion (baseline control) did not differ from those who were directed to consider the legitimate reasons for this treatment, with respect to perceived legitimacy, felt anger, and collective action intentions. In contrast, individuals who were directed to consider the illegitimate reasons for the exclusion perceived it to be less legitimate, felt more anger, and reported higher collective action intentions. Participants’ own status as potential victims or mere observers of the exclusion criterion did not influence their legitimacy perceptions or felt anger. Results suggest that when confronted with forms of group-based exclusion that are not commonly defined as discrimination, people do not perceive an injustice unless explicitly directed to seek it out

    Updates to the recently introduced family Lacipirellulaceae in the phylum Planctomycetes: isolation of strains belonsging to the novel genera Aeoliella, Botrimarina, Pirellulimonas and Pseudobythopirellula and the novel species Bythopirellula polymerisocia and Posidoniimonas corsicana

    Get PDF
    Eight novel strains of the phylum Planctomycetes were isolated from different aquatic habitats. Among these habitats were the hydrothermal vent system close to Panarea Island, a public beach at Mallorca Island, the shore of Costa Brava (Spain), and three sites with brackish water in the Baltic Sea. The genome sizes of the novel strains range from 4.33 to 6.29 Mb with DNA G+C contents between 52.8 and 66.7%. All strains are mesophilic (Topt 24–30 °C) and display generation times between 17 and 94 h. All eight isolates constitute novel species of either already described or novel genera within the family Lacipirellulaceae. Two of the novel species, Posidoniimonas polymericola (type strain Pla123aT^{T} = DSM 103020T^{T} = LMG 29466T^{T}) and Bythopirellula polymerisocia (type strain Pla144T^{T} = DSM 104841T^{T} = VKM B-3442T^{T}), belong to established genera, while the other strains represent the novel genera Aeoliella gen. nov., Botrimarina gen. nov., Pirellulimonas gen. nov. and Pseudobythopirellula gen. nov. Based on our polyphasic analysis, we propose the species Aeoliella mucimassa sp. nov. (type strain Pan181T^{T} = DSM 29370T^{T} = LMG 31346T^{T} = CECT 9840T^{T} = VKM B-3426T^{T}), Botrimarina colliarenosi sp. nov. (type strain Pla108T^{T} = DSM 103355T^{T} = LMG 29803T^{T}), Botrimarina hoheduenensis sp. nov. (type strain Pla111T^{T} = DSM 103485T^{T} = STH00945T^{T}, Jena Microbial Resource Collection JMRC), Botrimarina mediterranea sp. nov. (type strain Spa11T^{T} = DSM 100745T^{T} = LMG 31350T^{T} = CECT 9852T^{T} = VKM B-3431T^{T}), Pirellulimonas nuda sp. nov. (type strain Pla175T^{T} = DSM 109594T^{T} = CECT 9871T^{T} = VKM B-3448T^{T}) and Pseudobythopirellula maris sp. nov. (type strain Mal64T^{T} = DSM 100832T^{T} = LMG 29020T^{T})

    Reverse methanogenesis and respiration in methanotrophic archaea

    Get PDF
    Anaerobic oxidation of methane (AOM) is catalyzed by anaerobic methane-oxidizing archaea (ANME) via a reverse and modified methanogenesis pathway. Methanogens can also reverse the methanogenesis pathway to oxidize methane, but only during net methane production (i.e., "trace methane oxidation"). In turn, ANME can produce methane, but only during net methane oxidation (i.e., enzymatic back flux). Net AOM is exergonic when coupled to an external electron acceptor such as sulfate (ANME-1, ANME-2abc, and ANME-3), nitrate (ANME-2d), or metal (oxides). In this review, the reversibility of the methanogenesis pathway and essential differences between ANME and methanogens are described by combining published information with domain based (meta)genome comparison of archaeal methanotrophs and selected archaea. These differences include abundances and special structure of methyl coenzyme M reductase and of multiheme cytochromes and the presence of menaquinones or methanophenazines. ANME-2a and ANME-2d can use electron acceptors other than sulfate or nitrate for AOM, respectively. Environmental studies suggest that ANME-2d are also involved in sulfate-dependent AOM. ANME-1 seem to use a different mechanism for disposal of electrons and possibly are less versatile in electron acceptors use than ANME-2. Future research will shed light on the molecular basis of reversal of the methanogenic pathway and electron transfer in different ANME types.The authors thank Stefanie Berger (RU,Nijmegen) for critical reading of the manuscript. This research is supported by the Soehngen Institute of Anaerobic Microbiology (SIAM) Gravitation Grant (024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Organisation for Scientific Research (NWO). Mike S. M. Jetten was further supported by ERC AG 339880 Eco-MoM and Alfons J. M. Stams was supported by ERC AG 323009 Novel Anaerobes.info:eu-repo/semantics/publishedVersio

    Caulifigura coniformis gen. nov., sp. nov., a novel member of the family Planctomycetaceae isolated from a red biofilm sampled in a hydrothermal area

    Get PDF
    Pan44T^{T}, a novel strain belonging to the phylum Planctomycetes, was isolated from a red biofilm in a hydrothermal area close to the island Panarea in the Tyrrhenian Sea north of Sicily, Italy. The strain forms white colonies on solid medium and displays the following characteristics: cell division by budding, formation of rosettes, presence of matrix or fimbriae and long stalks. The cell surface has an interesting and characteristic texture made up of triangles and rectangles, which leads to a pine cone-like morphology of the strain. Strain Pan44T^{T} is mesophilic (temperature optimum 26 °C), slightly alkaliphilic (pH optimum 8.0), aerobic and heterotrophic. The strain has a genome size of 6.76 Mb with a G + C content of 63.2%. Phylogenetically, the strain is a member of the family Planctomycetaceae, order Planctomycetales, class Planctomycetia. Our analysis supports delineation of strain Pan44T^{T} from all known genera in this family, hence, we propose to assign it to a novel species within a novel genus, for which we propose the name Caulifigura coniformis gen. nov., sp. nov., represented by Pan44T^{T} (DSM 29405T^{T} = LMG 29788T^{T}) as the type strain

    Additions to the genus Gimesia: description of Gimesia alba sp. nov., Gimesia algae sp. nov., Gimesia aquarii sp. nov., Gimesia aquatilis sp. nov., Gimesia fumaroli sp. nov. and Gimesia panareensis sp. nov., isolated from aquatic habitats of the Northern Hemisphere

    Get PDF
    Thirteen novel planctomycetal strains were isolated from five different aquatic sampling locations. These comprise the hydrothermal vent system close to Panarea Island (Italy), a biofilm on the surface of kelp at Monterey Bay (CA, USA), sediment and algae on Mallorca Island (Spain) and Helgoland Island (Germany), as well as a seawater aquarium in Braunschweig, Germany. All strains were shown to belong to the genus Gimesia. Their genomes cover a size range from 7.22 to 8.29 Mb and have a G+C content between 45.1 and 53.7%. All strains are mesophilic (Topt 26-33 °C) with generation times between 12 and 32 h. Analysis of fatty acids yielded palmitic acid (16:0) and a fatty acid with the equivalent chain length of 15.817 as major compounds. While five of the novel strains belong to the already described species Gimesia maris and Gimesia chilikensis, the other strains belong to novel species, for which we propose the names Gimesia alba (type strain Pan241wT = DSM 100744T = LMG 31345T = CECT 9841T = VKM B-3430T), Gimesia algae (type strain Pan161T = CECT 30192T = STH00943T = LMG 29130T), Gimesia aquarii (type strain V144T = DSM 101710T = VKM B-3433T), Gimesia fumaroli (type strain Enr17T = DSM 100710T = VKM B-3429T) and Gimesia panareensis (type strain Enr10T = DSM 100416T = LMG 29082T). STH numbers refer to the Jena Microbial Resource Collection (JMRC)
    corecore