293 research outputs found
Dust Reddening in SDSS Quasars
We explore the form of extragalactic reddening toward quasars using a sample
of 9566 quasars with redshifts 0<z<2.2, and accurate optical colors from the
Sloan Digital Sky Survey (SDSS). We confirm that dust reddening is the primary
explanation for the red ``tail'' of the color distribution of SDSS quasars. Our
fitting to 5-band photometry normalized by the modal quasar color as a function
of redshift shows that this ``tail'' is well described by SMC-like reddening
but not by LMC-like, Galactic, or Gaskell et al. (2004) reddening. Extension to
longer wavelengths using a subset of 1886 SDSS-2MASS matches confirms these
results at high significance. We carry out Monte-Carlo simulations that match
the observed distribution of quasar spectral energy distributions using a
Lorentzian dust reddening distribution; 2% of quasars selected by the main SDSS
targeting algorithm (i.e., which are not extincted out of the sample) have
E_{B-V} > 0.1; less than 1% have E_{B-V} > 0.2, where the extinction is
relative to quasars with modal colors. Reddening is uncorrelated with the
presence of intervening narrow-line absorption systems, but reddened quasars
are much more likely to show narrow absorption at the redshift of the quasar
than are unreddened quasars. Thus the reddening towards quasars is dominated by
SMC-like dust at the quasar redshift.Comment: 29 pages including 8 figures. AJ, September 2004 issu
Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars
We present an analysis of the mid-infrared (MIR) and optical properties of type 1 (broad-line) quasars detected by the Spitzer Space Telescope. The MIR color-redshift relation is characterized to z ~ 3, with predictions to z = 7. We demonstrate how combining MIR and optical colors can yield even more efficient selection of active galactic nuclei (AGNs) than MIR or optical colors alone. Composite spectral energy distributions (SEDs) are constructed for 259 quasars with both Sloan Digital Sky Survey and Spitzer photometry, supplemented by near-IR, GALEX, VLA, and ROSAT data, where available. We discuss how the spectral diversity of quasars influences the determination of bolometric luminosities and accretion rates; assuming the mean SED can lead to errors as large as 50% for individual quasars when inferring a bolometric luminosity from an optical luminosity. Finally, we show that careful consideration of the shape of the mean quasar SED and its redshift dependence leads to a lower estimate of the fraction of reddened/obscured AGNs missed by optical surveys as compared to estimates derived from a single mean MIR to optical flux ratio
Evolution of the vertebrate corneal stroma
Although the cornea is the major refractive element of the eye, the mechanisms controlling corneal shape and hence visual acuity remain unknown. To begin to address this question we have used multiphoton, non-linear optical microscopy to image second harmonic generated signals (SHG) from collagen to characterize the evolutionary and structural changes that occur in the collagen architecture of the corneal stroma. Our studies show that there is a progression in complexity of the stromal collagen organization from lower (fish and amphibians) to higher (birds and mammals) vertebrates, leading to increasing tissue stiffness that may control shape. In boney and cartilaginous fish, the cornea is composed of orthogonally arranged, rotating collagen sheets that extend from limbus to limbus with little or no interaction between adjacent sheets, a structural paradigm analogous to 'plywood'. In amphibians and reptiles, these sheets are broken down into broader lamellae that begin to show branching and anastomosing with adjacent lamellae, albeit maintaining their orthogonal, rotational organization. This paradigm is most complex in birds, which show the highest degree of lamellar branching and anastomosing, forming a 'chicken wire' like pattern most prominent in the midstroma. Mammals, on the other hand, diverged from the orthogonal, rotational organization and developed a random lamellar pattern with branching and anastomosing appearing highest in the anterior stroma, associated with higher mechanical stiffness compared to the posterior stroma
Optical detection of the Pictor A jet and tidal tail : evidence against an IC/CMB jet
Date of Acceptance: 12/06/2015New images of the FR II radio galaxy Pictor A from the Hubble Space Telescope reveal a previously undiscovered tidal tail, as well as a number of jet knots coinciding with a known X-ray and radio jet. The tidal tail is approximately 5″ wide (3 kpc projected), starting 18″ (12 kpc) from the center of Pictor A, and extends more than 90″ (60 kpc). The knots are part of a jet observed to be about 4′ (160 kpc) long, extending to a bright hotspot. These images are the first optical detections of this jet, and by extracting knot flux densities through three filters, we set constraints on emission models. While the radio and optical flux densities are usually explained by synchrotron emission, there are several emission mechanisms that might be used to explain the X-ray flux densities. Our data rule out Doppler-boosted inverse Compton scattering as a source of the high-energy emission. Instead, we find that the observed emission can be well described by synchrotron emission from electrons with a low-energy index (p ∼ 2) that dominates the radio band, while a high-energy index (p ∼ 3) is needed for the X-ray band and the transition occurs in the optical/infrared band. This model is consistent with a continuous electron injection scenario.Peer reviewedFinal Accepted Versio
The First Swift Ultra-Violet/Optical Telescope GRB Afterglow Catalog
We present the first Swift Ultra-Violet/Optical Telescope (UVOT) gamma-ray
burst (GRB) afterglow catalog. The catalog contains data from over 64,000
independent UVOT image observations of 229 GRBs first detected by Swift, the
High Energy Transient Explorer 2 (HETE2), the INTErnational Gamma-Ray
Astrophysics Laboratory (INTEGRAL), and the Interplanetary Network (IPN). The
catalog covers GRBs occurring during the period from 2005 Jan 17 to 2007 Jun 16
and includes ~86% of the bursts detected by the Swift Burst Alert Telescope
(BAT). The catalog provides detailed burst positional, temporal, and
photometric information extracted from each of the UVOT images. Positions for
bursts detected at the 3-sigma-level are provided with a nominal accuracy,
relative to the USNO-B1 catalog, of ~0.25 arcseconds. Photometry for each burst
is given in three UV bands, three optical bands, and a 'white' or open filter.
Upper limits for magnitudes are reported for sources detected below 3-sigma.
General properties of the burst sample and light curves, including the
filter-dependent temporal slopes, are also provided. The majority of the UVOT
light curves, for bursts detected at the 3-sigma-level, can be fit by a single
power-law, with a median temporal slope (alpha) of 0.96, beginning several
hundred seconds after the burst trigger and ending at ~1x10^5 s. The median
UVOT v-band (~5500 Angstroms) magnitude at 2000 s for a sample of "well"
detected bursts is 18.02. The UVOT flux interpolated to 2000 s after the burst,
shows relatively strong correlations with both the prompt Swift BAT fluence,
and the Swift X-ray flux at 11 hours after the trigger.Comment: 60 pages, 17 figures, 8 tables, accepted for publication by the
Astrophysical Journa
The Factory and The Beehive II. Activity and Rotation in Praesepe and the Hyades
Open clusters are collections of stars with a single, well-determined age,
and can be used to investigate the connections between angular-momentum
evolution and magnetic activity over a star's lifetime. We present the results
of a comparative study of the relationship between stellar rotation and
activity in two benchmark open clusters: Praesepe and the Hyades. As they have
the same age and roughly solar metallicity, these clusters serve as an ideal
laboratory for testing the agreement between theoretical and empirical
rotation-activity relations at 600 Myr. We have compiled a sample of
720 spectra --- more than half of which are new observations --- for 516
high-confidence members of Praesepe; we have also obtained 139 new spectra for
130 high-confidence Hyads. We have collected rotation periods () for
135 Praesepe members and 87 Hyads. To compare emission, an indicator
of chromospheric activity, as a function of color, mass, and Rossby number
, we first calculate an expanded set of values, with which we can
obtain the to bolometric luminosity ratio, ,
even when spectra are not flux-calibrated and/or stars lack reliable distances.
Our values cover a broader range of stellar masses and colors (roughly
equivalent to spectral types from K0 to M9), and exhibit better agreement
between independent calculations, than existing values. We find no difference
between the two clusters in their equivalent width or
distributions, and therefore take the merged
and data to be representative of 600-Myr-old stars. Our analysis
shows that activity in these stars is saturated for
. Above that value activity declines as a
power-law with slope , before dropping off rapidly
at ...Comment: 17 pages, 15 figures, Accepted by Ap
Recommended from our members
RNA-Seq Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene that Modulates Cytokine Function in Airway Smooth Muscle Cells
Asthma is a chronic inflammatory respiratory disease that affects over 300 million people worldwide. Glucocorticoids are a mainstay therapy for asthma because they exert anti-inflammatory effects in multiple lung tissues, including the airway smooth muscle (ASM). However, the mechanism by which glucocorticoids suppress inflammation in ASM remains poorly understood. Using RNA-Seq, a high-throughput sequencing method, we characterized transcriptomic changes in four primary human ASM cell lines that were treated with dexamethasone—a potent synthetic glucocorticoid (1 µM for 18 hours). Based on a Benjamini-Hochberg corrected p-value <0.05, we identified 316 differentially expressed genes, including both well known (DUSP1, KLF15, PER1, TSC22D3) and less investigated (C7, CCDC69, CRISPLD2) glucocorticoid-responsive genes. CRISPLD2, which encodes a secreted protein previously implicated in lung development and endotoxin regulation, was found to have SNPs that were moderately associated with inhaled corticosteroid resistance and bronchodilator response among asthma patients in two previously conducted genome-wide association studies. Quantitative RT-PCR and Western blotting showed that dexamethasone treatment significantly increased CRISPLD2 mRNA and protein expression in ASM cells. CRISPLD2 expression was also induced by the inflammatory cytokine IL1β, and small interfering RNA-mediated knockdown of CRISPLD2 further increased IL1β-induced expression of IL6 and IL8. Our findings offer a comprehensive view of the effect of a glucocorticoid on the ASM transcriptome and identify CRISPLD2 as an asthma pharmacogenetics candidate gene that regulates anti-inflammatory effects of glucocorticoids in the ASM
Detection of non-thermal X-ray emission in the lobes and jets of Cygnus A
This article has been published in Monthly Notices of the Royal Astronomical Society © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. 21 pages, 8 figuresWe present a spectral analysis of the lobes and X-ray jets of Cygnus A, using more than 2 Ms of observations. The X-ray jets are misaligned with the radio jets and significantly wider. We detect non-thermal emission components in both lobes and jets. For the eastern lobe and jet, we find 1 keV flux densities of nJy and nJy, and photon indices of and respectively. For the western lobe and jet, we find flux densities of nJy and nJy, and photon indices of and respectively. Using these results, we modeled the electron energy distributions of the lobes as broken power laws with age breaks. We find that a significant population of non-radiating particles is required to account for the total pressure of the eastern lobe. In the western lobe, no such population is required and the low energy cutoff to the electron distribution there needs to be raised to obtain pressures consistent with observations. This discrepancy is a consequence of the differing X-ray photon indices, which may indicate that the turnover in the inverse-Compton spectrum of the western lobe is at lower energies than in the eastern lobe. We modeled the emission from both jets as inverse-Compton emission. There is a narrow region of parameter space for which the X-ray jet can be a relic of an earlier active phase, although lack of knowledge about the jet's electron distribution and particle content makes the modelling uncertain.Peer reviewedFinal Published versio
- …