91 research outputs found

    The application of environmental DNA (eDNA) methods for the monitoring and detection of aquatic microorganisms in aquaculture

    Get PDF
    This dissertation explores the use of environmental DNA (eDNA) to explore microbial ecology patterns and for pathogen surveillance, with a focus on recirculating aquaculture systems (RAS). While eDNA has transformed the study of microbial communities, gaps persist in understanding functional composition and interactions in complex ecosystems. The semi-controlled nature of RAS facilitates the exploration of microbial dynamics, making it an ideal system for studying microbiome-governed processes with implications for animal health

    Allopatric and sympatric diversification within roach (Rutilus rutilus) of large prealpine lakes

    Get PDF
    Intraspecific differentiation in response to divergent natural selection between environments is a common phenomenon in some lineages of northern freshwater fishes, especially salmonids and stickleback. Understanding why these taxa diversify and undergo adaptive radiations while most other fish species in the same environments do not, remains an open question. The possibility for intraspecific diversification has rarely been evaluated for most northern freshwater fish species. Here, we assess the potential for intraspecific differentiation between and within lake populations of roach (Rutilus rutilus) – a widespread and abundant cyprinid species - in lakes in which salmonids have evolved endemic adaptive radiations. Based on more than 3,000 polymorphic RADseq markers, we detected low but significant genetic differentiation between roach populations of two ultraoligotrophic lakes and between these and populations from other lakes. This, together with differentiation in head morphology and stable isotope signatures, suggests evolutionary and ecological differentiation among some of our studied populations. Next, we tested for intralacustrine diversification of roach within Lake Brienz, the most pristine lake surveyed in this study. We found significant phenotypic evidence for ecological intralacustrine differentiation between roach caught over a muddy substrate and those caught over a rocky substrate. However, evidence for intralacustrine genetic differentiation is at best subtle and phenotypic changes may therefore be mostly plastic. Overall, our findings suggest roach can differ between ecologically distinct lakes, but the extent of intralacustrine ecological differentiation is weak, which contrasts with the strong differentiation among endemic species of whitefish in the same lakes

    Pilot Project to Integrate Community and Clinical Level Systems to Address Health Disparities in the Prevention and Treatment of Obesity among Ethnic Minority Inner-City Middle School Students: Lessons Learned

    Get PDF
    Effective obesity prevention and treatment interventions are lacking in the United States, especially for impoverished minority youths at risk for health disparities, and especially in accessible community-based settings. We describe the launch and pilot implementation evaluation of the first year of the B’N Fit POWER initiative as a middle school-based comprehensive wellness program that integrates weight management programming into existing onsite preventive and clinical services. Consistent with the existing implementation science literature, we focused on both the organizational structures that facilitate communication and the development of trust among stakeholders, students, and families and the development of realistic and timely goals to implement and integrate all aspects of the program. New implementation and programming strategies were developed and tested to increase the proportion of students screened, support the linkage of students to care, and streamline the integration of program clinical and afterschool components into routine services already offered at the school. We report on our initial implementation activities using the Standards for Reporting Implementation Studies (StaRI) framework using hybrid outcomes combining the Reach element from the RE-AIM framework with a newly conceptualized Wellness Cascade

    Genetic diversity in the modern horse illustrated from genome-wide SNP data

    Get PDF
    Horses were domesticated from the Eurasian steppes 5,000-6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. F(ST) calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection

    Correction: Exome Sequencing of Phenotypic Extremes Identifies CAV2 and TMC6 as Interacting Modifiers of Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis

    Get PDF
    Discovery of rare or low frequency variants in exome or genome data that are associated with complex traits often will require use of very large sample sizes to achieve adequate statistical power. For a fixed sample size, sequencing of individuals sampled from the tails of a phenotype distribution (i.e., extreme phenotypes design) maximizes power and this approach was recently validated empirically with the discovery of variants in DCTN4 that influence the natural history of P. aeruginosa airway infection in persons with cystic fibrosis (CF; MIM219700). The increasing availability of large exome/genome sequence datasets that serve as proxies for population-based controls affords the opportunity to test an alternative, potentially more powerful and generalizable strategy, in which the frequency of rare variants in a single extreme phenotypic group is compared to a control group (i.e., extreme phenotype vs. control population design). As proof-of-principle, we applied this approach to search for variants associated with risk for age-of-onset of chronic P. aeruginosa airway infection among individuals with CF and identified variants in CAV2 and TMC6 that were significantly associated with group status. These results were validated using a large, prospective, longitudinal CF cohort and confirmed a significant association of a variant in CAV2 with increased age-of-onset of P. aeruginosa airway infection (hazard ratio = 0.48, 95% CI=[0.32, 0.88]) and variants in TMC6 with diminished age-of-onset of P. aeruginosa airway infection (HR = 5.4, 95% CI=[2.2, 13.5]) A strong interaction between CAV2 and TMC6 variants was observed (HR=12.1, 95% CI=[3.8, 39]) for children with the deleterious TMC6 variant and without the CAV2 protective variant. Neither gene showed a significant association using an extreme phenotypes design, and conditions for which the power of an extreme phenotype vs. control population design was greater than that for the extreme phenotypes design were explored

    Genetic Diversity in the Modern Horse Illustrated from Genome-Wide SNP Data

    Get PDF
    Horses were domesticated from the Eurasian steppes 5,000–6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. FST calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection

    A High Density SNP Array for the Domestic Horse and Extant Perissodactyla: Utility for Association Mapping, Genetic Diversity, and Phylogeny Studies

    Get PDF
    An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalski's Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species
    • …
    corecore