32 research outputs found

    ECP versus ruxolitinib in steroid-refractory acute GVHD – a retrospective study by the EBMT transplant complications working party

    Get PDF
    IntroductionExtracorporal Photophoresis (ECP) is in clinical use for steroid-refractory and steroid-dependent acute GVHD (SR-aGVHD). Based on recent Phase-III study results, ruxolitinib has become the new standard of care for SR-aGVHD. Our aim was to collect comparative data between ruxolitinib and ECP in SR-aGVHD in order to improve the evidence base for clinical decision making. MethodsWe asked EBMT centers if they were willing to participate in this study by completing a data form (Med-C) with detailed information on GVHD grading, -therapy, -dosing, -response and complications for each included patient.Results31 centers responded positively (14%) and we included all patients receiving alloSCT between 1/2017-7/2019 and treated with ECP or ruxolitinib for SR-aGVHD grades II-IV from these centers. We identified 53 and 40 patients with grades II-IV SR-aGVHD who were treated with ECP and ruxolitinib, respectively. We performed multivariate analyses adjusted on grading and type of SR-aGVHD (steroid dependent vs. refractory). At day+90 after initiation of treatment for SR-aGVHD we found no statistically significant differences in overall response. The odds ratio in the ruxolitinib group to achieve overall response vs. the ECP group was 1.13 (95% CI = [0.41; 3.22], p = 0.81). In line, we detected no statistically significant differences in overall survival, progression-free survival, non-relapse mortality and relapse incidence.DiscussionThe clinical significance is limited by the retrospective study design and the current data can’t replace prospective studies on ECP in SR-aGVHD. However, the present results contribute to the accumulating evidence on ECP as an effective treatment option in SR-aGVHD

    Nerve growth factor induces neurite outgrowth of PC12 cells by promoting Gβγ-microtubule interaction

    Get PDF
    Background: Assembly and disassembly of microtubules (MTs) is critical for neurite outgrowth and differentiation. Evidence suggests that nerve growth factor (NGF) induces neurite outgrowth from PC12 cells by activating the receptor tyrosine kinase, TrkA. G protein-coupled receptors (GPCRs) as well as heterotrimeric G proteins are also involved in regulating neurite outgrowth. However, the possible connection between these pathways and how they might ultimately converge to regulate the assembly and organization of MTs during neurite outgrowth is not well understood. Results: Here, we report that Gβγ, an important component of the GPCR pathway, is critical for NGF-induced neuronal differentiation of PC12 cells. We have found that NGF promoted the interaction of Gβγ with MTs and stimulated MT assembly. While Gβγ-sequestering peptide GRK2i inhibited neurite formation, disrupted MTs, and induced neurite damage, the Gβγ activator mSIRK stimulated neurite outgrowth, which indicates the involvement of Gβγ in this process. Because we have shown earlier that prenylation and subsequent methylation/demethylation of γ subunits are required for the Gβγ-MTs interaction in vitro, small-molecule inhibitors (L-28 and L-23) targeting prenylated methylated protein methyl esterase (PMPMEase) were tested in the current study. We found that these inhibitors disrupted Gβγ and ΜΤ organization and affected cellular morphology and neurite outgrowth. In further support of a role of Gβγ-MT interaction in neuronal differentiation, it was observed that overexpression of Gβγ in PC12 cells induced neurite outgrowth in the absence of added NGF. Moreover, overexpressed Gβγ exhibited a pattern of association with MTs similar to that observed in NGF-differentiated cells. Conclusions: Altogether, our results demonstrate that βγ subunit of heterotrimeric G proteins play a critical role in neurite outgrowth and differentiation by interacting with MTs and modulating MT rearrangement. Electronic supplementary material The online version of this article (doi:10.1186/s12868-014-0132-4) contains supplementary material, which is available to authorized users

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Endocrine Disrupting Compound 4-Nonylphenol and Neurodegeneration

    No full text
    Neurodegeneration, a progressive loss of nerve cells (neurons), occurs in many neurological disorders including Alzheimer\u27s disease, Parkinson\u27s disease, Schizophrenia, and drug addiction. Cytoskeletal disruption in neurons and aggregation of proteins associated with these disorders is the hallmark of neurodegeneration. However, the cause of neurodegenerative disorders is unknown and currently there are no effective drug treatments. Aging is the most consistent risk factor for developing a neurodegenerative disorder, and recent evidence suggests that environmental factors, which act as endocrine disruptors, pose a risk in the disease process. 4- nonylphenol (4-NP), an endocrine-disrupting compound (EDC), has been shown to affect brain development and may cause neurodegeneration. In the environment, 4-NP arises as a degradation product of alkylphenol polyethoxylates, compounds widely used as nonionic surfactants in commercial production, as well as in herbicides, pesticides, polystyrene plastics, and paints and has been shown to undergo high level of accumulation in biological tissues. However, the mechanism by which 4-NP exerts its effect is not understood. Recent results from our laboratory indicate that Gbetagamma, an important component of the G protein-signaling pathway, induces neurite outgrowth and that the interactions of Gbetagamma with microtubules (MTs), an important component of the cytoskeleton, is important for this process. Furthermore, we found that blocking the Gbetagamma-MT interaction induces neurodegeneration. The goal of the present research is to determine whether 4-NP inhibits neurite outgrowth and induces neurodegeneration by altering the Gbetagamma-MT- mediated pathway, and if other cytoskeletal components are involved in this process. Pheochromocytoma (PC12) cells were used to conduct the study because they respond to nerve growth factor (NGF) and exhibit a typical phenotype of neurons. In Specific Aim 1, using biochemical, pharmacological, and immunoconfocal methodologies, I have demonstrated that 4- NP inhibits neurite outgrowth and induces neurodegeneration by altering MT-Gbetagamma interaction in PC12 cells. In Specific Aim 2, I have conducted the proteomic analysis of 4-NP treated cells and found that the compound affects the cytoskeletal profile in NGF-differentiated PC12 cells. In conclusion, I propose that one of the mechanisms by which 4-NP causes neuronal damage is by altering the Gbetagamma-cytoskeletal mediated pathway, which is critical for neuronal growth and development

    Inhibitors of Polyisoprenylated Methylated Protein Methyl Esterase (PMPMEase) cause Neurodegeneration by altering Microtubules and Gβγ in PC12 Cells

    No full text
    Neurodegeneration, a progressive loss of nerve cells (neurons), occurs in many neurological disorders including Alzheimer’s disease, Parkinson’s disease, Schizophrenia and drug addiction. Disruption of Microtubules (MTs), a major component of cytoskeleton and aggregation of proteins associated with them is the hallmark of neurodegeneration. Gβγ, an important component of G protein signaling has been shown to induce neurite outgrowth of PC12 cells by interacting with microtubules. The goal of the present study is to understand whether interfering with Gβγ-MT mediated pathway causes neurodegeneration. Because prenylation of γ subunits is important for the interaction of Gβγ with MTs, we used inhibitors (L-23 and L-28) for PMPMEase (polyisoprenylated methylated protein methyl esterase), an enzyme involved in the prenylation pathway to conduct the study. PC12 cells were treated with NGF over the course of three days, followed by overnight treatment with L-28 or L-23. Confocal microscopy was used to analyze the results. We found that more than 70% of PC12 cells exhibit neurite formation in the presence of NGF. Neurite formation was not affected significantly in the presence of PMSF or L-23 (100mM). L-28 (10μM), on the other hand significantly reduced neurite formation as well as MTs and Gβγ labeling. In addition, severe cellular degeneration was observed (more than 60% areas in the slides). The result suggests that inhibitors of PMPMEase could be used as valuable tools to study the mechanism of neurodegeneration and design strategies to develop effective drugs against drug addiction and other neurodegenerative disorders

    DataSheet_1_ECP versus ruxolitinib in steroid-refractory acute GVHD – a retrospective study by the EBMT transplant complications working party.pdf

    No full text
    IntroductionExtracorporal Photophoresis (ECP) is in clinical use for steroid-refractory and steroid-dependent acute GVHD (SR-aGVHD). Based on recent Phase-III study results, ruxolitinib has become the new standard of care for SR-aGVHD. Our aim was to collect comparative data between ruxolitinib and ECP in SR-aGVHD in order to improve the evidence base for clinical decision making. MethodsWe asked EBMT centers if they were willing to participate in this study by completing a data form (Med-C) with detailed information on GVHD grading, -therapy, -dosing, -response and complications for each included patient.Results31 centers responded positively (14%) and we included all patients receiving alloSCT between 1/2017-7/2019 and treated with ECP or ruxolitinib for SR-aGVHD grades II-IV from these centers. We identified 53 and 40 patients with grades II-IV SR-aGVHD who were treated with ECP and ruxolitinib, respectively. We performed multivariate analyses adjusted on grading and type of SR-aGVHD (steroid dependent vs. refractory). At day+90 after initiation of treatment for SR-aGVHD we found no statistically significant differences in overall response. The odds ratio in the ruxolitinib group to achieve overall response vs. the ECP group was 1.13 (95% CI = [0.41; 3.22], p = 0.81). In line, we detected no statistically significant differences in overall survival, progression-free survival, non-relapse mortality and relapse incidence.DiscussionThe clinical significance is limited by the retrospective study design and the current data can’t replace prospective studies on ECP in SR-aGVHD. However, the present results contribute to the accumulating evidence on ECP as an effective treatment option in SR-aGVHD.</p

    Immunocompromised patients with acute respiratory distress syndrome: Secondary analysis of the LUNG SAFE database

    Get PDF
    Background: The aim of this study was to describe data on epidemiology, ventilatory management, and outcome of acute respiratory distress syndrome (ARDS) in immunocompromised patients. Methods: We performed a post hoc analysis on the cohort of immunocompromised patients enrolled in the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) study. The LUNG SAFE study was an international, prospective study including hypoxemic patients in 459 ICUs from 50 countries across 5 continents. Results: Of 2813 patients with ARDS, 584 (20.8%) were immunocompromised, 38.9% of whom had an unspecified cause. Pneumonia, nonpulmonary sepsis, and noncardiogenic shock were their most common risk factors for ARDS. Hospital mortality was higher in immunocompromised than in immunocompetent patients (52.4% vs 36.2%; p &lt; 0.0001), despite similar severity of ARDS. Decisions regarding limiting life-sustaining measures were significantly more frequent in immunocompromised patients (27.1% vs 18.6%; p &lt; 0.0001). Use of noninvasive ventilation (NIV) as first-line treatment was higher in immunocompromised patients (20.9% vs 15.9%; p = 0.0048), and immunodeficiency remained independently associated with the use of NIV after adjustment for confounders. Forty-eight percent of the patients treated with NIV were intubated, and their mortality was not different from that of the patients invasively ventilated ab initio. Conclusions: Immunosuppression is frequent in patients with ARDS, and infections are the main risk factors for ARDS in these immunocompromised patients. Their management differs from that of immunocompetent patients, particularly the greater use of NIV as first-line ventilation strategy. Compared with immunocompetent subjects, they have higher mortality regardless of ARDS severity as well as a higher frequency of limitation of life-sustaining measures. Nonetheless, nearly half of these patients survive to hospital discharge. Trial registration: ClinicalTrials.gov, NCT02010073. Registered on 12 December 2013
    corecore