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Nerve growth factor induces neurite outgrowth
of PC12 cells by promoting Gβγ-microtubule
interaction
Jorge A Sierra-Fonseca1,3,5, Omar Najera1,3, Jessica Martinez-Jurado1,3, Ellen M Walker1,3, Armando Varela-Ramirez2,3,
Arshad M Khan1,3, Manuel Miranda1,3, Nazarius S Lamango4 and Sukla Roychowdhury1,3*
Abstract

Background: Assembly and disassembly of microtubules (MTs) is critical for neurite outgrowth and differentiation.
Evidence suggests that nerve growth factor (NGF) induces neurite outgrowth from PC12 cells by activating the
receptor tyrosine kinase, TrkA. G protein-coupled receptors (GPCRs) as well as heterotrimeric G proteins are also
involved in regulating neurite outgrowth. However, the possible connection between these pathways and how
they might ultimately converge to regulate the assembly and organization of MTs during neurite outgrowth is not
well understood.

Results: Here, we report that Gβγ, an important component of the GPCR pathway, is critical for NGF-induced
neuronal differentiation of PC12 cells. We have found that NGF promoted the interaction of Gβγ with MTs and
stimulated MT assembly. While Gβγ-sequestering peptide GRK2i inhibited neurite formation, disrupted MTs, and
induced neurite damage, the Gβγ activator mSIRK stimulated neurite outgrowth, which indicates the involvement
of Gβγ in this process. Because we have shown earlier that prenylation and subsequent methylation/demethylation
of γ subunits are required for the Gβγ-MTs interaction in vitro, small-molecule inhibitors (L-28 and L-23) targeting
prenylated methylated protein methyl esterase (PMPMEase) were tested in the current study. We found that these
inhibitors disrupted Gβγ and ΜΤ organization and affected cellular morphology and neurite outgrowth. In further
support of a role of Gβγ-MT interaction in neuronal differentiation, it was observed that overexpression of Gβγ in
PC12 cells induced neurite outgrowth in the absence of added NGF. Moreover, overexpressed Gβγ exhibited a
pattern of association with MTs similar to that observed in NGF-differentiated cells.

Conclusions: Altogether, our results demonstrate that βγ subunit of heterotrimeric G proteins play a critical role in
neurite outgrowth and differentiation by interacting with MTs and modulating MT rearrangement.

Keywords: Neurite outgrowth, Microtubules, Gβγ, Heterotrimeric G proteins, Tubulin
Background
Neuronal outgrowth is a complex process in which two
distinct domains emerge from the cell body: a long, thin
axon that transmits signals, and multiple shorter den-
drites, which are specialized primarily for receiving signals.
When fully differentiated through axon and dendrite
elongation, this unique morphology allows neurons to
achieve precise connectivity between appropriate sets of
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neurons, which is crucial for the proper functioning of the
nervous system. While many signals are known to drive
neuronal outgrowth, it is the assembly and disassembly of
cytoskeletal structures embodied within neurite extension
and growth cone formation that are essential for es-
tablishing appropriate synaptic connections and signal
transmission.
Microtubules (MTs) form dense parallel arrays in

axons and dendrites that are required for the growth
and maintenance of these neurites [1]. Selective stabili-
zation of MTs also occurs during neuronal differentiation
[2,3]. In the axon, MTs are bundled by the microtubule-
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associated protein (MAP) tau, with their plus ends ori-
ented toward the nerve terminal. In contrast, dendritic
MTs, bundled instead by MAP2, have a mixed orientation,
with their plus ends facing either the dendritic tips or the
cell body. Since localized changes in the assembly and
organization of MTs are sufficient to alter axon and den-
dritic specification and development [1], knowledge of the
precise signaling mechanisms controlling MT assembly
and organization is crucial for our understanding of neur-
onal plasticity and neurodegenerative diseases.
Over the years, pheochromocytoma (PC12) cells have

been used as a model to study neuronal differentiation
because they respond to nerve growth factor (NGF) and
exhibit a typical phenotype of neuronal cells sending out
neurites [4]. NGF is a neurotrophic factor critical for the
survival and maintenance of sympathetic and sensory
neurons, and it binds to the high-affinity tyrosine kinase
receptor, TrkA, leading to its phosphorylation and the
subsequent activation of PI3K/Akt/GSK3β pathways. This,
in turn, facilitates the cytoskeletal rearrangements neces-
sary for neurite outgrowth [5-8]. The Rho and Ras families
of small GTPases are also important regulators of the
MTs and the actin cytoskeleton in neurons, and modulate
downstream effectors, including serine threonine kinase,
p21-activated kinase, ROCK, and mDia [9,10]. The G
protein-coupled receptors (GPCRs) and the α and βγ
subunits of heterotrimeric G proteins also participate in
neurite outgrowth [11-18]. Gβγ has been shown to regu-
late neurite outgrowth in primary hippocampal neurons
by interacting with Tctex-1, a light-chain component of
the cytoplasmic dynein motor complex [17]. It has been
proposed that Gβγ might accomplish this function by
linking extracellular signals to localized regulation of MTs
and actin filaments through Rho GTPase and downstream
MT modulators [17,19]. PI3K is also a downstream effec-
tor of Gβγ in GPCR signaling [20,21], and recent results
suggest that the activation of PI3K/Akt pathway by NGF
is, in part, mediated through the βγ subunit [19,22,23].
These studies collectively suggest a role of Gβγ in neur-
onal differentiation. However, the mechanisms by which
Gβγ acts to regulate neurite outgrowth are still not well
understood.
We have shown earlier that Gβγ binds to tubulin and

stimulates MT assembly in vitro. Using the MT depoly-
merizing drug nocodazole, we have demonstrated that
Gβγ-MT interaction is critical for MTassembly in cultured
PC12 and NIH3T3 cells [24-26]. In the current study, we
asked whether Gβγ is involved in NGF-induced neuronal
differentiation of PC12 cells through its ability to interact
with MTs and modulate MT assembly. We found that
the interaction of Gβγ with MTs, and MT assembly
increased significantly in response to NGF; and that a
Gβγ-sequestering peptide, GRK2i, inhibited neurite out-
growth and induced MT disruption, supporting a critical
role of the Gβγ-MT interaction in neurite outgrowth.
Furthermore, the overexpression of Gβγ in PC12 cells
induced neurite formation in the absence of NGF, and
overexpressed protein co-localized with MTs in the neur-
ites. We also found that small-molecule inhibitors of pre-
nylated methylated protein methyl esterase (PMPMEase),
an enzyme involved in the prenylation pathway [27], dis-
rupted the MT and Gβγ organization and inhibited neur-
ite outgrowth.

Methods
Cell culture and NGF treatment
PC12 cells (pheochromocytoma cells derived from the
adrenal gland of Rattus norvegicus) (ATCC, Manassas,
VA), were grown in 75-cm2 culture flasks at 37°C in
Dulbecco’s Modified Eagle’s Medium (DMEM) (4.5 g/L
glucose, L-glutamine, without pyruvate), supplemented
with 10% bovine calf serum and antibiotics (100 U/mL
penicillin and 100 μg/mL streptomycin) in 10% CO2. For
NGF treatment, PC12 cells were treated with 100 ng/mL
of NGF (Sigma-Aldrich, St. Louis, MO) dissolved in
complete media for three consecutive days. Control cells
without NGF were also grown under the same condi-
tions. For quantitative assessment of neurite outgrowth,
PC12 cells were only treated with NGF for 2 days in-
stead of 3, given that the density of neurite outgrowth
does not allow for proper tracing of neurites belonging
to a specific cell body.

PMPMEase inhibitors (L-28 and L-23), Gβγ-blocking peptide
(GRK2i), and Gβγ activator mSIRK
PMPMEase is a key enzyme in the reversible methyla-
tion/demethylation step in the protein prenylation path-
way. Using phenylmethylsulfonyl fluoride (PMSF) as a
prototypical molecule, Aguilar et al. [27] recently synthe-
sized high-affinity-specific inhibitors of PMPMEase. Two
such inhibitors, 2-trans-Geranylthioethanesulfonyl fluor-
ide (L-23) and 2-trans, trans-Farnesylthioethanesulfonyl
fluoride (L-28) were used in our study. A stock solution
of 20 mM L-23 or L-28 were prepared in DMSO and
diluted in tissue culture media to a final concentration
of 1, 5, or 10 μM and added to the cells as indicated in
the figures. The DMSO concentration in the culture
media never exceeded 0.05%. In addition, a control expe-
riment was performed in the presence of a similar con-
centration of DMSO. The sequence of the Gβγ-blocking
peptide GRK2i (WKKELRDAYREAQQLVQRVPKMKNK
PRS) from Tocris Bioscience (Bristol, UK), encodes the
Gβγ-binding domain of G protein-coupled receptor kinase
2 (GRK2) and acts as a cellular Gβγ antagonist. A stock
solution of the peptide (1 mM) was prepared in 10%
DMSO, and was added to the cells at final concentrations
of 1, 5, or 10 μM as indicated in the figure. The DMSO
concentration in the culture media never exceeded 0.1%
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and as indicated above, the control experiment was also
performed in the presence of 0.1% DMSO in the culture
media. A stock solution (1 mM) of mSIRK peptide (myr
SIRKALNILGYPDYD) (EMD Chemicals) was also pre-
pared similar to that described for GRK-2i.

Extraction of microtubules (MT) and soluble tubulin (ST)
fractions
PC12 cells were grown on 100- or 150-mm plates to 70%
confluence over 1–2 days and subjected to NGF and/or
various treatments as indicated in the figures. The plates
were used in duplicates for each condition. Microtubules
(MTs) and soluble tubulin (ST)) fractions were prepared
by extracting soluble proteins in an MT stabilizing (MS)
buffer as described previously [26] with a minor modifica-
tion adopted from Marklund et al. [28]. Briefly, cells were
rinsed in PBS and incubated with 0.5–1 ml MS buffer
(0.1 M PIPES, pH 6.9, 2 M glycerol, 5 mM MgCl2, 2 mM
EGTA, 0.5% Triton X-100) containing protease inhibitor
cocktail (Roche Applied Science, Indianapolis, IN), 1 mM
DTT, and 10 μM GTP) for ~10 min at room temperature.
Subsequently, the cells were removed mechanically (using
a cell scraper) and centrifuged at 10,000 × g for 10 min.
The supernatant constitutes the ST fraction and the cell
pellets represent the MT fraction that includes the tubulin
polymers. Pellets were washed in PEM buffer (100 mm
PIPES, pH 6.9, 2 mM EGTA, 1 mM MgCl2) and resus-
pended in PEM buffer containing 1 mM DTT, 10 μM
GTP, and protease inhibitor cocktail followed by incuba-
tion in ice for 30 min. Protein extraction was performed
by sonicating the samples on ice for 1 min and clarifying
by centrifugation at 10,000 × g for 10 min. This proced-
ure yielded highly reproducible results in technically
replicated samples used for each condition in a given
experiment.

Preparation of whole cell lysates
PC12 cells were grown on 100- or 150-mm plates to
80% confluence over 1–2 days. Cells were then treated
with or without NGF as indicated. The medium was re-
moved, and the cells were washed with PBS followed by
incubating with 0.5–1 mL lysis buffer (10 mM Tris–HCl,
pH 7.9, 1.5 mM MgCl2, 0.3 M sucrose, 0.1% Triton X-100,
1 mM DTT, 10 μM GTP, and protease inhibitor cocktail)
in ice until the cells were lysed. Cells were then scraped
with a rubber policeman and sonicated in ice for 1 min,
followed by centrifugation at 10,000 × g for 10 min. Super-
natants represent whole-cell lysates. Protein concentrations
were typically between 1–2 mg/mL.

Electrophoresis, immunoblotting, and immunoprecipitation
Samples for immunoblotting were subjected to SDS-
polyacrylamide gel (10%) electrophoresis, followed by
electrotransfer onto nitrocellulose membranes [29,30].
The membranes were incubated in 5% nonfat dry milk
in TBS (10 mM Tris–HCl and 150 mM NaCl, pH 7.4)
for 2 h at room temperature, followed by overnight
incubation with mouse monoclonal anti-α tubulin [Sigma-
Aldrich Cat# T9026 RRID:AB_477593] or rabbit poly-
clonal anti-Gβ [Santa Cruz Biotechnology Cat# sc-378
RRID:AB_631542] in TBS containing 0.01% BSA (1:200
dilution) as previously described (Montoya et al. [26]).
The membranes were washed with 0.05% Tween-20
in TBS (TBST) and incubated with appropriate HRP-
conjugated secondary antibodies (goat anti-mouse or
goat anti-rabbit from Promega, Madison, WI; 1:1000)
in TBST containing 0.01% BSA for 1 h. For sensitive detec-
tion, the chemiluminescence (ECL) technique (SuperSignal
West Pico Chemiluminescent Substrate) was used accord-
ing to the manufacturer’s instructions (Pierce Biotechnol-
ogy, Rockford, IL). Quantitative analysis was done using
LabWorks image acquisition and analysis software (UVP
Laboratory Products, Upland, CA). For immunoprecipita-
tion, 100 μL aliquots of cellular fractions (~0.25–1 mg/mL)
were incubated with or without anti-Gβ, anti-tub (5–
10 μl), or non-specific rabbit IgG for 1 h at 4°C, followed
by the overnight incubation (4°C) with 100 μL 50% protein
A-sepharose (Amersham Biochemical, Piscataway, NJ), as
previously described [26]. Samples were then centrifuged
at 10,000 × g for 10 min, and the supernatants (SUP) were
saved. The pellets (immunocomplex) were washed with
TBS and eluted with 3% SDS Laemmli sample buffer con-
taining 0.15 M dithiothreitol (DTT) and boiled in a water
bath for 5 min. Samples were then clarified by centrifuga-
tion. Both IP and SUP fractions were then subjected to
immunoblotting using anti-tubulin or anti-Gβ antibody as
discussed above.

Overexpression of Gβγ
PC12 cells were transiently transfected with yellow fluor-
escent protein (YFP)-tagged pcDNA3.1 plasmids encoding
for Gβ1, Gγ1 or Gγ2 subunits. Cells were either co-
transfected with β1 and γ2, β1 and γ1, or transfected with
individual constructs (Gβ1, Gγ1, and Gγ2). The expres-
sion plasmids were generously provided by Dr. N. Gautam
(Washington University, St. Louis, MO). He and his
colleagues developed these constructs and showed that
the tagged β and γ subunits are functional [31,32]. These
constructs are now available through Addgene. A plasmid
encoding only YFP (pcDNA3-YFP, Addgene, Cambridge,
MA) was used as a control. Cells were transfected with
the plasmids using Lipofectamine LTX PLUS reagent
(Invitrogen, Carlsbad, CA) according to the manufactu-
rer’s instructions. Briefly, PC12 cells were seeded on glass
coverslips using 12-well plates at a density of 50,000 cells/
well, and incubated overnight under normal growth con-
ditions. The following day, the cells were transfected with
a mixture of Lipofectamine LTX PLUS containing 2 μg of
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each plasmid (dissolved in antibiotic-free media) and in-
cubated overnight in normal growth media. Cells were
monitored for protein expression (YFP fluorescence)
and morphological changes using differential interfer-
ence contrast (DIC) images at different time points (24,
48, and 72 h), using a Zeiss Axiovert 200 fluorescence
microscope equipped with a GFP filter. For confocal
microscopic analysis, the cells were fixed and processed as
described below.

Confocal microscopy
For confocal microscopic analysis, PC12 cells were
allowed to attach to immunocytochemistry slides (Lab-
TEK II mounted on glass slides, Thermo Fisher Scientific,
Rochester, NY) and were grown overnight as described
above. Cells were then treated with or without NGF as in-
dicated and subsequently fixed by the addition of ice-cold
100% methanol (previously cooled to −20°C) and incuba-
ted at −20°C for 6 min as described [26]. The cells were
then rinsed three times in PBS, blocked for 1 h at room
temperature in 5% normal goat serum (NGS) (Sigma-
Aldrich) in PBS, followed by overnight incubation at 4°C
with mouse monoclonal anti-α tubulin [Sigma-Aldrich
Cat# T9026 RRID:AB_477593] and/or rabbit polyclonal
anti-Gβ [Santa Cruz Biotechnology Cat# sc-378 RRID:
AB_631542] in 1% NGS in PBS (1:100 dilution) as indi-
cated in the figure. The slides were rinsed as before and
incubated with the tetramethyl rhodamine (TMR)-conju-
gated goat anti-mouse IgG and/or fluorescein isothiocyan-
ate (FITC)-conjugated goat anti-rabbit IgG (Molecular
Probes-Invitrogen, Carlsbad, CA) for 2 h in the dark to
diminish photo-bleaching effects. The slides were then
mounted with DAKO mounting media (DAKO Corpor-
ation, Carpenteria, CA), or with ProLong Gold anti-fade
reagent with DAPI (Invitrogen, Carlsbad, CA) for nuclear
staining), and covered with coverslip. High-resolution,
digital, fluorescent images were captured by employing
inverted, confocal-laser-scanning microscopy (model LSM
700; Zeiss, Thornwood, NY), utilizing a Plan-Apochromat
63×/1.40 immersion-oil DIC objective and assisted with
ZEN 2009 software (Zeiss, Thornwood, NY). DAPI (blue),
FITC (green), and rhodamine (red) were excited with laser
emissions at 405-, 488-, and 555-nm wavelengths, re-
spectively. Gβγ overexpressed cells were only labeled
with anti-α-tubulin.

Co-localization analysis
To quantitatively assess the degree of co-localization
between Gβγ and MTs, regions of interest (ROIs) were
delimited within cells to decrease the background fluores-
cence contribution. Co-localization was calculated using a
squared Manders’ overlap coefficient of the defined sig-
nals, performed on a pixel-by-pixel basis, which repre-
sented an accurate degree of co-localization. The overlap
coefficient according to Manders provided values within
the range from 0 to 1; a value of 0 means that there were
no pixels within the selected ROI with overlapped signals,
whereas a value of 1 represents perfectly co-localized
pixels [33]. The values for selected ROIs were acquired
from images taken from 10–12 cells from different micro-
scope fields, using ZEN 2009 software. In order to rule
out bleed-through of the fluorescent labels, control cover-
slips were prepared with a single fluorophore and were
further imaged under the same microscope settings used
with the double-labeled coverslips.

3-D image analysis
Image stacks were imported into Volocity 3-D Image
Analysis Software (Version 6.0; Perkin Elmer Corporation,
Waltham, MA) operating on a Macintosh Pro computer.
In Volocity’s Restoration module, a point-spread function
was calculated to deconvolve the native image stack using
iterative restoration (80%, 20 iterations max). In Volocity’s
Visualization module, a joystick control aided in free flight
through the newly rendered 3-D image for selection of
proper viewing approaches alongside labeled neurites of
the cell. These instances within the moving sequence were
bookmarked, and the bookmarks were dropped into the
software’s movie-making interface. The final sequence was
exported as a QuickTime movie and still frames from this
movie sequence were selected to generate.

Neurite outgrowth assessment
For neurite outgrowth measurement, cells were fixed
and processed for confocal microscopy using a mouse
monoclonal anti-tubulin antibody and a rabbit polyclonal
Gβ antibody, followed by labeling with rhodamine- and
FITC-conjugated secondary antibodies. Due to the fast
photo-bleaching of the FITC fluorophore, the cells were
only imaged using rhodamine staining for the purpose of
neurite outgrowth assessment. Cells were viewed using
the 40× objective with a Zeiss LSM 700 confocal micro-
scope. The coverslips were scanned from left to right,
and 8–10 fields were randomly selected. For each field,
neurites were traced and measured using the 2009 ZEN
software (Zeiss), and at least 100 cells from three inde-
pendent experiments were scored for each condition.
A cell was considered as neurite-bearing if it contained
at least one neuronal process that was longer than the
cell body.

Neuronal primary cultures from rat-brain cerebellum and
hippocampus
Primary cultures of cerebellum and hippocampus neu-
rons were prepared from brains of postnatal day (1–2)
Sprague Dawley rats as previously described [34,35]. The
cerebellum and hippocampus were dissected from the
brain and dissociated by papain digestion for 1 h at room



Sierra-Fonseca et al. BMC Neuroscience  (2014) 15:132 Page 5 of 19
temperature, followed by mechanical disaggregation with
a Pasteur pipette. Cells were then plated on glass cover-
slips using 12-well plates at a density of 250,000 cells/well
(for confocal microscopy), or on 100-mm culture dishes at
a density of 1×107 cells/plate (for subcellular fractionation
experiments). Both glass coverslips and culture dishes
were pre-coated with 0.01% poly-D-lysine and 10 μg/mL
laminin dissolved in PBS. Neuronal cultures were main-
tained in Neurobasal A media with B27 supplement
(Invitrogen), Glutamax, antibiotics (100 U/mL penicil-
lin, and 100 μg/mL streptomycin), and mitotic inhibitors
(10 μM uridine + fluoro-deoxyuridine). Cultures were fed
every other day by replacing half of the media with fresh,
complete media. Neuronal primary cultures were used for
confocal microscopy and subcellular fractionation experi-
ments after they became fully differentiated (at least seven
days in culture).

Animal ethics
Experiments using vertebrate animals involved prepar-
ation of Primary cultures of cerebellum and hippocam-
pal neurons from brains of postnatal day 1 Sprague
Dawley rats. The procedure was done in accordance
with the National Institute of Health Guide for the Care
and Use of laboratory Animals, and approved by the
UTEP Institutional Animal Care and Use Committee
(IACUC approval # A-201402-1).

Differential nuclear staining (DNS) assay for cytotoxicity
To determine the levels of cytotoxicity caused by the
experimental compounds (L-28, L-23, PMSF, GRK2i)
previously described DNS assay adapted for high-
throughput screening was used [36]. This assay uses two
fluorescent nucleic acid intercalators, Hoechst 33342
(Hoechst) and propidium iodide (PI). Briefly, PC12 cells
were seeded in a 96-well plate format and incubated
with NGF and inhibitors. One h before image capturing,
cells were added with a staining mixture of Hoechst and
PI at a final concentration of 1 μg/mL for each dye. Sub-
sequently, cells were imaged in live-cell mode using a
BD Pathway 855 Bioimager system (BD Biosciences,
Rockville, MD). Montages (2×2) from four adjacent image
fields were captured per well in order to acquire an ad-
equate number of cells for statistical analysis, utilizing a
10× objective. To determine the percentage of dead cells
from each individual well, both image acquisition and data
analysis were performed using the BD AttoVision v1.6.2
software (BD Biosciences), and each experimental condi-
tion was assessed in triplicate.

Statistical analysis
All statistical analyses were performed using Sigma Plot
11 software (Systat Software, Chicago, IL, USA). In the
case of Western blot quantitative analysis, the differences
between controls and treatments were assessed by means
of the Student’s paired t-test. In the case of neurite
outgrowth analysis, the differences in various conditions
were assessed by means of one-way ANOVA followed by
Holm-Sidak testing (multiple comparisons vs. control).
For comparisons between two groups, the Student’s paired
t-test was employed, and in all cases, a value of p < 0.05
was considered to be statistically significant.

Results
NGF-induced neuronal differentiation promotes the
interaction of Gβγ with MTs and stimulates MT assembly
Assembly and disassembly of MTs is critical for neurite
outgrowth and differentiation. Previously we have shown
that Gβγ binds to tubulin and promotes MT assembly
in vitro, and Gβ immunoreactivity was found exclusively
in the MT fraction after assembly in the presence of
β1γ2, suggesting a preferential association with MTs
rather than soluble tubulin [24]. In PC12 cells, we found
that Gβγ interacts with MTs and is involved in regulat-
ing MT assembly [26]. Because NGF is known to induce
neuronal differentiation, we thought that one of the
mechanisms by which NGF induces neuronal differenti-
ation could be via Gβγ-MT interactions and changes in
MT assembly. To address this, PC12 cells were treated
with NGF over the course of three days to allow for
neuronal differentiation. Microtubules (MTs) and soluble
tubulin (ST) fractions were extracted using a microtubule-
stabilizing buffer (MS) as indicated in the methods. The
interaction of Gβγ with MT and ST fractions were ana-
lyzed by co-immunoprecipitating tubulin-Gβγ complex
using a Gβ-specific antibody (rabbit polyclonal anti-Gβ)
(Figure 1B and C) or a mouse monoclonal anti-α tubulin
antibody (Figure 1A and C), and by determining tubulin
or Gβ immunoreactivity respectively in immunoprecipi-
tated (IP) samples. We found that both anti-tubulin and
anti-Gβ antibodies could co-immunoprecipitate tubulin-
Gβγ complex (Figure 1A and B), and Gβγ was bound
preferentially to MTs rather than to dimeric tubulin
(ST), which is consistent with our previous studies
[24-26]. As predicted, the interaction of Gβγ with MTs
was increased significantly (2–3 fold) in NGF-treated cells
(Figure 1C). Both Gβ (Figure 1B) and tubulin (Figure 1A)
were also immunoprecipitated with respective antibodies.
We found that the level of protein immunoprecipitated
(tubulin or Gβ) increased to some degree in the presence
of NGF although the levels did not correlate with co-
immunoprecipated proteins. When immunoprecipitation
was performed (control PC12 cells) in the absence of
primary antibody (“No ab”) or non-specific rabbit IgG
(“IgG”), tubulin- or Gβ- immunoreactivity was not
detected in the immunocomplex (Figure 1A and B). This
validates the co-immunoprecipitation analysis we have
developed to examine tubulin-Gβγ interactions. The result



Figure 1 NGF promotes the interaction of Gβγ with MTs and stimulates MT assembly. PC12 cells were treated with 100 ng/mL of NGF for
three consecutive days. Microtubules (MTs) and soluble tubulin (ST) fractions (A–D), or cell lysates (E) were prepared as described in the methods.
(A–C) Equal amounts of proteins from MT or ST fractions were subjected to co-immunoprecipitation (tubulin and Gβγ) using anti-tubulin (A) or
anti-Gβ (B) followed by immunoblot analysis (Gβ and tub) of immunoprecipitates (IP) and supernatants (SUP) as indicated in the figures. Control
experiments include immunoprecipitation in the absence of a primary antibody (No Ab) or in the presence of non-specific rabbit or mouse IgG
(IgG). Immunoprecipitation of tubulin or Gβ resulted in co-immunoprecipitation (CO-IP) of tubulin and Gβ. Protein bands (IP) were quantitated
and expressed as NGF-induced increase in CO-IP (C). Bar graph shows the mean ± standard error from 3–5 (N) independent experiments as indicated
(C). (D) Polymerized (MT) and free tubulin (ST) contents as well as the association of Gβ in MT/ST fractions were analyzed by immunoblotting (IB)
(left panel). Bar graph represents MT assembly (percent of tubulin in MT) or the percent Gβγ in MT fractions (D, right panel) from five independent
experiments (mean ± standard error). Loading control include re-probing the blots with anti-actin. (E) Representative immunoblots show that NGF does
not alter tub or Gβ immunoreactivity in cell lysates (left panel). Loading control include actin. The NGF effect on the increase in co-immunoprecipition
of tub and Gβγ (using anti-tub antibody) is shown in the right panel. *p < 0.05; ***p < 0.001.
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also confirms that the immunoprecipitation experiment
can be performed reliably using the MT fraction employed
in our study. The MT assembly was assessed by deter-
mining tubulin immunoreactivity in MT and ST frac-
tions and measuring the ratio of tubulin incorporated in
the MTs vs. free tubulin as a direct measure of MT as-
sembly (Figure 1D). We found that MT assembly was
stimulated significantly (from 45.3 ± 4.8% to 70.1 ± 3.6%)
in NGF-differentiated PC12 cells (Figure 1D). Loading
control includes re-probing the blots with anti-actin. To
determine whether protein expression was affected after
NGF treatment, cell lysates were prepared and subjected
to western blotting. Representative immunoblots show
that NGF does not alter tubulin or Gβ immunoreactivity
in cell lysate (Figure 1E, left panel). The effect of NGF on
the increase in co-immunoprecipition of tubulin and Gβγ
(using anti-tub antibody) is shown in the right panel.
Previously, using the anti-microtubule drug nocodazole,
we have shown that the interaction of Gβγ with MTs is an
important determinant for MT assembly. While micro-
tubule depolymerization by nocodazole inhibited the
interactions between MTs and Gβγ, this inhibition was
reversed when microtubule assembly was restored by
the removal of nocodazole [26].
Although it can be argued that MT structure is no lon-

ger intact in MT fraction subsequent to sonication and
low-speed centrifugation, we have shown earlier that the
tubulin dimer binds to Gβγ and that the tubulin-Gβγ
complex preferentially associates with MTs [24,25]. There-
fore, tubulin-Gβγ complex is expected to be present in the
MT fraction prepared in this study. The absence of any
interaction between Gβγ and tubulin in the ST fraction
in spite of their presence further supports this result
(Figure 1A). Furthermore, tubulin oligomers are expec-
ted to be present in the MT fraction, and the possibility
exists that Gβγ preferentially binds the oligomeric
structures [24]. The increased interactions of Gβγ with
MTs and the stimulation of MT assembly observed in
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the presence of NGF could allow for a rearrangement of
MTs during neuronal differentiation.
The interaction of Gβγ with MTs in NGF-differentiated

cells was also assessed by immunofluorescence micros-
copy. PC12 cells that were treated with and without NGF
were examined for Gβ and tubulin by confocal microscopy.
Tubulin was detected with a monoclonal anti-tubulin
(primary antibody) followed by a secondary antibody
(goat-anti-mouse) that was labeled with tetramethyl
rhodamine (TMR). Similarly, Gβγ was identified with
rabbit polyclonal anti-Gβ followed by FITC-conjugated
secondary antibody (goat-anti-rabbit), and the cellular
localizations and co-localizations were recorded by laser-
scanning confocal microscopy. In control cells (in the ab-
sence of NGF), Gβγ co-localized with MTs in the cell body
as well as the perinuclear region (Figure 2A, a–c; see also
enlargement in c’). After NGF treatment, the majority of
the cells displayed neurite formation (Figure 2A, d–f ).
Gβγ was detected in the neurites (solid arrow, yellow) and
in cell bodies (broken arrow, yellow), where they co-
localized with MTs. Interestingly, Gβγ was also localized
at the tips of the growth cones (Figure 2A, f), where very
Figure 2 Gβγ co-localizes with MTs in the neuronal processes in NGF-
NGF (control). (A) The cells were then fixed and double labeled with anti-t
methods. Areas of overlay appear yellow. The enlarged image of the white
region (c’). The white box on the lower panel (f’) shows the enlarged grow
process and in the central portion of the growth cone, while the neuronal
indicates neuronal processes, and the broken yellow arrow indicates cell bo
neuronal tips. The scale bars in “a–c” and “d–f” are 20 μm and 50 μm, res
was quantitatively assessed using Zeiss ZEN software. A representative ima
PC12 cell is shown. (C) A representative scattergram depicting co-localization
Western blots (using PC12 whole-cell lysates) showing the specificity of th
immunofluorescence.
little tubulin immunoreactivity was observed (green
arrowhead). The enlarged image of the white box in f
(Figure 2A, f ’) indicates the co-localization of Gβγ
with MTs/tubulin along the neuronal process and in
the central portion of the growth cone, but not at the
tip of the growth cones. To quantitatively assess the
overall degree of co-localization between Gβγ and MTs/
tubulin along the neuronal processes, an entire neuronal
process was delineated as a region of interest (ROI) using
a white contour (Figure 2B), and the co-localization
scattergram (using Zeiss ZEN 2009 software) is shown in
Figure 2C, in which green (Gβγ) and red (tubulin) signals
were assigned to the x and y axes, respectively. Each pixel
is presented as a dot, and pixels with well co-localized
signals appear as a scatter diagonal line. The average
Manders’ overlap coefficient (0.91 ± 0.014) suggests a ro-
bust co-localization between Gβγ and tubulin along the
neuronal process. We found that ~60% of cells exhibit
strong co-localization between Gβγ and tubulin (Manders’
overlap coefficients 0.9 or above) in the presence of
NGF. Rest of the cells also showed high degree of co-
localization ranged from 0.6 to 0.87. The specificities
differentiated PC12 cells. PC12 cells were treated with and without
ubulin (red) and anti-Gβ (green) antibodies as indicated in the
box (c) shows co-localization of Gβγ with MTs in the perinuclear
th cone, with Gβγ co-localizing with tubulin along the neuronal
tips show predominant Gβγ immunostaining. The solid yellow arrow
dy. Green arrowhead indicates only Gβ labeling (not tubulin) at the
pectively. (B) Co-localization of Gβγ with MTs in the neuronal processes
ge of a region of interest (neuronal process) of an NGF-differentiated
of Gβγ with MTs along the neuronal process is shown. (D) Representative
e anti-Gβ (left) and anti-tubulin (right) antibodies that were used for
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of the antibodies are demonstrated in Figure 2D, in
which the monoclonal anti-α tubulin antibody appears
to be highly specific for tubulin in PC12 cells and the
polyclonal anti-Gβ antibody we used for the immuno-
fluorescence studies does not show any cross reactivity
with other proteins in PC12 cells.

Gβγ-binding peptides affect MT organization, cellular
morphology, and neurite formation in NGF- differentiated
PC12 cells
To better understand the role of Gβγ in MT organization
and neurite outgrowth, we used two synthetic Gβγ-
binding peptides GRK2i, and mSIRK. GRK2i, a Gβγ-
inhibitory peptide, corresponds to the Gβγ-binding
domain of GRK2 (G-protein-coupled receptor kinase 2)
and selectively prevents Gβγ-mediated signaling and has
therefore been a valuable tool for understanding Gβγ-
dependent functions in cell culture systems [37-41]. On
the other hand, mSIRK is known to activate Gβγ signaling
in cells by promoting the dissociation of Gβγ from α
subunits without a nucleotide exchange [42,43].
To test the effect of GRK2i, PC12 cells were treated

with 100 ng/mL of NGF for two consecutive days to in-
duce neurite outgrowth. Subsequently, 5 μM GRK2i was
added to the media and the cells were incubated for 10,
30, and 60 min as indicated in the figure (Figure 3). The
cells were then fixed and double labeled with anti-tubulin
(red) and anti-Gβ (green) antibodies, and processed for
confocal microscopy. DAPI was used for nuclear staining
(blue). Control cells exhibit typical neuronal morphology,
displaying long neurites (Figure 3A (a-d). Gβγ is shown to
co-localize with tubulin/MTs along the neuronal processes
(solid yellow arrow). As indicated in Figure 3A (e–h), neu-
rite damage (enlarged images f ’, g’, and h’) as well as MTs
and Gβγ aggregation (enlarged images f”, g”, h”) was
observed in the presence of 5 μM GRK2i. In addition,
cellular aggregation was also frequently observed in the
presence of GRK2i. Images shown here were taken after
60 min of incubation with GRK2i. We used higher
magnification and enlarged images of GRK2i-treated
cells to show neurite damage, MT disruption, and cellular
aggregation. Measurement of the number and length of
neurites provides a quantitative assessment of neuronal
differentiation [44]. Therefore, the effect of GRK2i on
neuronal differentiation was assessed by measuring average
neurite lengths as well as the percentage of cells bearing
neurites (Figure 3B) as described in the methods. A cell
was considered neurite-bearing if it contained at least
one neuronal process that was longer than the cell body
(13.7 ± 0.5 μm in diameter). As indicated in Figure 3B
and C, the percentage of cells bearing neurites was re-
duced significantly—from 38.1 ± 3.1% in control cells to
22.8 ± 3.1% after 30 min of incubation with GRK2i—and
did not reduce further after 60 min of incubation. The
average neurite length of surviving neurites decreased
modestly in the presence of GRK2i and increasing the
incubation time from 10 min to 60 min did not have any
additional effect. To better understand the role of GRK2i,
we pre-incubated PC12 cells with GRK2i for 2 h and
allowed them to differentiate in the presence of NGF. We
found that the effect of GRK2i on the average neurite
length, as well as on the cells bearing neurites, were quite
similar to that observed with the post-incubation of pre-
formed neurites with GRK2i (Additional file 1: Figure S1).
We found that mSIRK (1 and 5 μM) did not inhibit

neurite outgrowth but rather increased average neurite
length (Figure 3C). Interestingly, many of the neurites
formed in the presence of mSIRK were longer compared
with control cells and had morphology similar to that
observed in Gβγ overexpressed cells, which could be
due to the fact that mSIRK can increase the free Gβγ
pool in a cell similar to Gβγ overexpression. This obser-
vation is supported by a recent report by Garcia-
Oliveres et al. [43] in which the authors found that
Gβγ overexpression, or treatment with the Gβγ acti-
vator mSIRK, resulted in rapid inhibition of dopamine-
transporter (DAT) activity in cells.

Inhibitors of prenylated methylated protein methyl
esterase (PMPMEase) disrupt MTs and Gβγ organization
and affect neurite formation
A number of proteins, including the γ subunit of Gβγ,
undergo a process of post-translational modification
termed prenylation, and this modification is important
for the biological functions of these proteins. Earlier, we
have shown that prenylation of the γ subunit of Gβγ is
important for the interaction of Gβγ with tubulin and
stimulation of MT assembly in vitro [24,25]. The preny-
lation pathway consists of three enzymatic steps, the first
of which is the addition of a prenyl group to the cysteine
residue of the carboxy-terminal CAAX motif, followed
by the cleavage of the tripeptide (AAX). The terminal
carboxylic acid group then undergoes methylation, which
is catalyzed by the prenylated protein methyl transferase
(PPMTase, also known as isoprenylcysteine carboxylme-
thyltransferase or ICMT). PMPMEase readily hydrolyzes
ester bonds of the methylated prenylated proteins, thus
making the methylation step reversible [45-47]. Using
phenylmethylsulfonyl fluoride (PMSF) as a prototypical
molecule, Aguilar et al. [27] have recently synthesized
high-affinity-specific inhibitors of PMPMEase and two
such inhibitors (L-23 and L-28) have been shown to in-
duce degeneration of human SHSY5Y neuroblastoma
cells, suggesting that this enzyme plays a possible role in
neuronal survival [27,45]. Therefore, we used L-23 and
L-28 (Figure 4) in this study to determine whether
PMPMEase may play a regulatory role in the Gβγ-
dependent regulation of MTs and neurite outgrowth.



Figure 3 Effect of Gβγ-binding peptides, GRK2i, and mSIRK on MTs and Gβγ organization and neurite outgrowth. (A) PC12 cells were
treated with 100 ng/mL of NGF for two consecutive days. Subsequently, 5 μM GRK2i was added to the media and the cells were incubated for
10, 30, and 60 min as indicated. The cells were then fixed and double labeled with anti-tubulin (red) and anti-Gβ (green) antibodies and processed for
confocal microscopy. DAPI was used for nuclear staining (blue). Control cells exhibit typical neuronal morphology, displaying long neurites. Gβγ is
shown to co-localize with tubulin/MTs along the neuronal processes (solid yellow arrow) but not at the tip of the neurites (green arrowheads), where
Gβγ immunostaining is predominant. Inhibition of Gβγ signaling by incubation with GRK2i causes neurite damage, microtubule disruption, and alters
the Gβγ-tubulin co-localization pattern as shown in the enlarged images in the white boxes (f’–h’, and f”–h”). To test the effect of mSIRK, PC12 cells
were treated with mSIRK (1 μM) for 2 h, followed by 1-day treatment with NGF. Scale bars are 20 μm. (B–C) PC12 cells were treated with GRK2i or
mSIRK as described above, followed by fixing and processing for confocal microscopy. Using Zeiss ZEN software, neurites were traced and measured,
and average neurite length and percent of cells bearing neurites were determined. Differences between experimental conditions were assessed by
one-way ANOVA. *p < 0.05; **p < 0.01.
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Figure 4 Inhibitors of PMPMEase disrupt neurite outgrowth of NGF-differentiated PC12 cells. PC12 cells were treated with PMPMEase
inhibitors, L-23 and L-28 (5 μM, and 10 μM), or the prototypical molecule PMSF (10 μM) and allowed to differentiate in the presence of 100 ng/mL of
NGF for two consecutive days. (A) The cells were then fixed and double labeled with anti-tubulin (red) and anti-Gβ (green) antibodies, and DAPI was
used for nuclear staining (blue). Co-localization patterns are also shown in the merged images. PMSF did not seem to have any significant effects on
neuronal morphology (a–d). PMPMEase inhibitors inhibited neurite outgrowth of NGF-treated PC12 cells, causing axonal damage (e–h, enlarged image
shown in h’), neurite shortening (i–l, enlarged image shown in l’), and cellular aggregation (m–p). Scale bars are 20 μm (B–C). Using Zeiss ZEN software,
neurites were traced and measured, and the average neurite length and percent of cells bearing neurites were estimated. The differences between
experimental conditions were assessed by one-way ANOVA. *p < 0.05; **p < 0.01.
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Two separate approaches were used to test the effect of
the inhibitors. First, PC12 cells were treated with the
PMPMEase inhibitors (L-23, L-28), or PMSF (1, 5, or
10 μM) overnight, and then allowed to differentiate in
the presence of NGF for two consecutive days. Second,
PC12 cells were treated with 100 ng/mL of NGF over
the course of two days, followed by overnight treatment
with L-28, L-23, or the prototypical molecule PMSF.
Both approaches essentially produced a similar effect.
At 1-μM concentration, the inhibitors did not have any
noticeable effect on neurite outgrowth (figure not
shown). As shown in the figure (Figure 4), pretreatment
with both inhibitors significantly affected NGF-induced
neurite outgrowth, with L-28 being more potent. Con-
focal microscopic examination shows neurite damage
(Figure 4A, e–h; see the enlarged image in the box), inhib-
ition of neurite outgrowth (Figure 4A, i–l), and altered
organization of the MTs and Gβγ. Cellular aggregation
was also evident in the presence of 10 μM L-23 or L-28.
Again, the effect was more potent in the presence of L-28
(Figure 4A, m–p). As indicated in Figure 4A (m–p), Gβγ
was concentrated in the cell-cell contact region (clearly
visible in the enlarged box) in the presence of 10 μM L-28
and could be responsible for mediating cellular aggrega-
tion. The effects of L-23 and L-28 on neuronal outgrowth
were assessed quantitatively by measuring average neurite
lengths as well as the percentage of cells bearing neurites
as was done previously in the presence of GRK2i. As indi-
cated in Figure 4B and C, the percentage of cells bearing
neurites was reduced significantly in the presence of 5 or



Figure 5 Inhibitors of PMPMEase and GRK2i do not induce
neuronal cell death. PC12 cells were grown on 96-well plates and
treated with NGF for two days followed by incubation with 5 μM GRK2i
for 10, 30, and 60 min (A). For PMPMEase inhibitors treatment, cells
were seeded on 96-well plates and incubated simultaneously with NGF
and PMSF, L-23, or L28 (5 and 10 μM) for two days (B). Subsequently,
cells were incubated with a Hoechst/propidium iodide (PI) mixture for
DNS cytotoxicity assay. The images were captured in live-cell-image
mode using the confocal automated microscope BD Pathway
Bioimager System and a 10× objective, assisted with AttoVision
software. H2O2 (100 μM) was used as a positive control. Cell nuclei
stained with Hoechst provided the total number of cells; cell nuclei
stained with PI indicate the number of dead cells; merged Hoechst
and PI images. Cell death was plotted as the percent of PI-positive cells,
denoting the total number of dead cells for each condition.
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10 μM L-23 and L-28, with L-28 at 10 μM being the most
potent. The average neurite length of surviving neur-
ites was also decreased modestly in the presence of
10 μM L-23, or 5 μM and 10 μM L-28. Once again,
L-28 at 10 μM appeared to be the most potent in
inhibiting neurite outgrowth. The effect of PMPMEase
inhibitors in preformed neurites (post-treatment with
L-23 and L-28) is shown in Additional file 2. As shown
in the figure (Additional file 2), the effect of inhibitors is
essentially similar to that observed in Figure 4, except
that average neurite lengths were unaffected by L-23.
We also tested the effect of PMPMEase inhibitors in
PC12 cells in the absence of NGF to determine whether
the MT cytoskeleton is affected in undifferentiated
PC12 cells (Additional file 3). As shown in the figure
(Additional file 3) disruption of MTs, altered cellular
localization of Gβγ, as well as cellular aggregation was
also observed in control PC12 cells. The result further
suggests that neurite damage observed in the presence
of PMPMEase inhibitors might be due to the disruption
of Gβγ-MT mediated pathways.
Since neurodegeneration occurs in the presence of

Gβγ-inhibitory peptide GRK2i or PMPMEase inhibitos
L-23 and L-28, it is necessary to demonstrate that the in-
hibitors are not toxic to the cells under the experimental
conditions used for this study. To determine the levels of
cytotoxicity caused by L-28, L-23, or GRK2i, previously
described DNS assay adapted for high-throughput screen-
ing was used [36]. This assay uses two fluorescent nucleic
acid intercalators, Hoechst 33342 (Hoechst) and propi-
dium iodide (PI). Hoechst has the ability to cross cell
membranes of both healthy and dead cells and to stain
nuclear DNA, thus providing the total number of cells,
whereas PI is only able to stain cells having a loss of
plasma-membrane integrity, thus denoting the number of
dead cells. In the case of GRK2i treatment, PC12 cells
were grown on 96-well plates and induced to differentiate
in the presence of NGF for two days, followed by incu-
bation with 5 μM GRK2i for 10, 30, and 60 min. For
PMPMEase inhibitors treatment, cells were seeded on
96-well plates and incubated simultaneously with NGF
and PMSF, L-23, or L28 (5 and 10 μM) for two days.
Cells were then incubated with a mixture of Hoechst/
propidium iodide (PI). Subsequently, cells were imaged
in live mode using a BD Pathway 855 Bioimager system
as described in the methods section. The percentage of
dead cells in the presence of inhibitors was determined
by using the BD AttoVision v1.6.2 software (BD Biosci-
ences) and the result was plotted as shown in the figure
(Figure 5). As indicated in the figure, GRK2i did not
cause cytotoxicity on NGF-differentiated PC12 cells. In
the case of the PMPMEase inhibitors L-23, no cell death
was detected at the tested concentrations. Cell death starts
to appear at 10 μM L-28, and could account for cellular
aggregation observed in the presence of 10 μM L-28
(Figure 4, m-p). The prototypical compound, PMSF,
was also assayed and not found to be cytotoxic. Hydrogen
peroxide (100 μM) was used as a positive control.

Overexpression of Gβγ in PC12 cells induces neurite
outgrowth: Overexpressed Gβγ co-localizes with MTs in
the neuronal processes
To further elucidate the role of Gβγ in neuronal differ-
entiation, we overexpressed Gβγ in PC12 cells. Since
previous studies have indicated that Gβ1γ2 promoted
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MT assembly in vitro—and Gβ1γ1 was without any effect
[24]—PC12 cells were transfected with either β1γ1 or
β1γ2. YFP-tagged β1, γ2, or γ1 constructs were used for
transfection. Cells were co-transfected with β1 and γ2, β1
and γ1, or individual constructs (Gβ1, Gγ1, and Gγ2). A
plasmid encoding only YFP was used as control. Cells
were monitored for protein expression and for possible
neurite formation at different time points (24, 48, and
72 h). Both DIC and fluorescent images of the live cells
are shown in Figure 6.
We found that within 24 hours of transfection, both

β1γ1 and β1γ2 transfected PC12 cells were found to
overexpress the proteins as demonstrated by the fluores-
cent (YFP) labeling. DIC images indicated no changes in
morphology (Figure 6A, a–b; 6B, k–l). At 48 h of trans-
fection, YFP-β1γ2 transfected cells induced neurite for-
mation (in the absence of NGF). Overexpressed protein
(YFP-Gβ1γ2) was localized in the neurite processes
(white arrows), growth cones (red arrows), and cell bod-
ies as shown by fluorescent (YFP) labeling (Figure 6A).
Higher magnification was used (Figure 6, c-j, m-p) to
show the details of the morphological changes observed
in Gβγ-overexpressed PC12 cells. For example, Cytoskel-
etal labeling (Figure 6f, arrowhead) was observed in higher
magnification in some cells, suggesting the localization of
the protein with cytoskeletal filaments. Interestingly, we
found that many of the β1γ2 overexpressed cells had a
tendency to divide into two equal halves at the tip of the
neurites (dashed arrow). After 72 hours, some cells dis-
played complex neurite formation (Figure 6A, g-h), but in
many cells the neurites became shortened and the tips be-
came enlarged (Figure 6A, i-J; yellow arrows). As indicated
in the figure (Figure 6B), Gβ1γ1-transfected PC12 cells
also induced neurite formation although to a lesser ex-
tent than Gβ1γ2-transfected cells as determined by live
microscopy and quatitative analysis of neurite length
(Figure 6D and E). Control cells overexpressing only
YFP did not induce neurite formation after 48 or 72 h of
transfection (Figure 6C). The addition of NGF (100 ng/
mL) did not have any additional effect on neurite forma-
tion in Gβγ-overexpressed cells. Because both Gβ and
Gγ constructs used in the current study were YFP
tagged, it was not possible to evaluate whether cells that
induced neurites were overexpressed with both subunits
or not. However, when PC12 cells were transfected with
individual constructs (Gβ1, Gγ1, and Gγ2), they all in-
duced neurites (live images are not shown), although
average neurite lengths were less than that observed in
the presence of Gβ1γ2 or Gβ1γ1 (Figure 6D and E).
To assess neurite outgrowth in Gβγ-overexpressing

cells, average neurite lengths as well as the percentage of
cells bearing neurites were measured in Gβ1-, Gγ1-,
Gγ2-, Gβ1γ1-or Gβ1γ2-overexpressed cells (Figure 6D
and E). Overexpressed cells (48 h) were fixed and
processed for confocal microscopy using a mouse mono-
clonal anti-tubulin antibody, followed by labeling with
rhodamine (TMR) conjugated secondary antibody. The
overexpressed cells (YFP-tagged) were only imaged using
rhodamine staining for the purpose of neurite outgrowth
assessment. Cells were viewed using the 40× objective
with a Zeiss LSM 700 confocal microscope. The coverslips
were scanned from left to right, and 8–10 fields were ran-
domly selected. For each field, neurites were traced and
measured using the 2009 ZEN software (Zeiss) and at least
100 cells from three independent experiments were scored
for each condition. A cell was considered neurite bearing
if it contained at least one neuronal process that was
longer than the cell body (15.59 ± 0.5 μm in diameter).
The average neurite length of Gβ1γ2 (42.8 ± 2.1 μm) and
Gβ1γ1 (33.5 ± 1.8 μm) is significantly higher than that of
control cells (18.4 ± 0.6 μm), with Gβ1γ2 having the most
potent effect on neurite outgrowth. Cells overexpressing
singly with Gβ or Gγ subunits also exhibited an increase
in average neurite lengths compared to control cells as
indicated in the figure (Figure 6D and E). Although
the average neurite length in Gβγ-overexpressing cells
(42.8 ± 2.1 μm) was slightly lower than that observed
in NGF-differentiated PC12 cells (53.6 ± 1.8 μm), the
result clearly indicates the effectiveness of Gβγ in in-
ducing neurite outgrowth. We also evaluated the per-
centage of cells bearing at least one neurite in cells in
each condition. We found that ~25% of the Gβ1γ2-
overexpressing cells induced at least one neurite (Figure 6E).
About 10% of control cells overexpressing only YFP in-
duced short neurites was also observed in PC12 cells in
the absence of NGF.
To test the localization and association of overex-

pressed Gβγ (YFP-Gβ1γ2) with MTs, cells overexpress-
ing Gβγ (48 h) were fixed and processed for confocal
microscopy (Figure 7) as previously done with NGF-
differentiated cells. Tubulin was detected with a monoclo-
nal mouse anti-tubulin antibody followed by a secondary
antibody (goat anti-mouse) that was labeled with tetra-
methyl rhodamine. Gβγ and MTs were visualized with
high-resolution 3-D reconstructions of confocal image
stacks using Volocity 3-D Image Analysis Software. Rota-
tions performed on the deconvolved 3-D reconstruction
within the software’s graphical user interface allowed the
transfected PC12 cells to be viewed from any direction for
a more complete picture of the neuronal processes. The
localization of Gβγ in neuronal processes and its associ-
ation with MTs were clearly visible by panning, zooming,
and rotating the 3-D images. Bookmarking the time points
at which we performed these translations of the recon-
struction allowed for capture within a motion picture
format (see Additional file 4) and the extraction of still
frames (Figure 7). MT filaments (red; Figure 7A, left panel,
and Figure 7B, Frame 819) and Gβγ (green; Figure 7A,



Figure 6 Overexpression of Gβγ induces neurite outgrowth in PC12 cells. PC12 cells were co-transfected with YFP-tagged constructs encoding
(A) Gβ1 and Gγ2 (β1γ2) or with (B) Gβ1 and Gγ1 (β1γ1) in the absence of NGF, using Lipofectamine LTX PLUS reagent according to manufacturer
instructions. Cells overexpressing fluorescent proteins were monitored at different time points (24, 48, and 72 h) for protein expression and
morphological changes using a fluorescence microscope. Images taken with DIC and YFP filters are shown. (C) PC12 cells transfected with a
plasmid-encoding YFP only was used as control and observed through the same time points. Neuronal processes, white arrows; growth cones,
red arrows; axonal branching, broken white arrow; cytoskeletal labeling, white arrowhead; enlarged and bulky neurites, yellow arrows. (D and E)
Neurites were traced and measured using the 2009 ZEN software from Zeiss. At least 100 cells from three independent experiments were measured
for each preparation, and average neurite length and percent of cells bearing neurites calculations and statistical analysis were done using SigmaPlot
software. (D) The average neurite length of Gβ1-, Gγ1-, Gγ2-, Gβ1γ1- and Gβ1γ2- overexpressing PC12 cells. (E) The percentage of cells bearing neurites
in transfected cells was also estimated. *p value < 0.05; **p value < 0.005 when compared to control. #p value = 0.005 when compared with β1γ1.
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Figure 7 Three-dimensional (3-D) view of co-localization of Gβγ and microtubules (MTs). Co-localization of overexpressed Gβγ (green) with
MTs (red) as visualized by high-resolution 3-D confocal images using Volocity software (see Methods). The images shown in this assembly are still
frames from Additional file 4: Movie 1 (Supplementary materials). (A) A still frame from the movie separated into its component channels: MT
(red) and Gβγ (green) expression are each confined discretely to similar subcellular locations as shown in the merged panel (yellow). (B) Representative
still frames were selected to summarize the movie content. The numbers on the top right of each still image denote the frame numbers within the
movie. Arrows in frame 819 correspond to MT expression (red, top arrow) and Gβγ (green, bottom arrow) expression. The arrow in frame 866 points to
co-localization of MT and Gβγ (yellow). The edges of each individual square in the background grid for each image are 19.21 μm in length. For detailed
description, please see the text.
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middle panel, and Figure 7B, Frame 819) interact through-
out the neuronal process as evidenced by clear yellow
labeling (Figure 7B, Frame 866). Gβγ labeling (green) was
also observed from all directions to be alongside yellow
labeling throughout the neuronal process (Figure 7B,
Frames 499, 669, 786, 819, and 866). In some areas, red
labeling was also clearly visible. The labeling pattern ap-
pears to support our in-vitro results, which indicate that
Gβγ binds on the microtubule wall when promoting
MT assembly [24]. These results are also consistent with
the possibility that the yellow labeling we observe in
neurites marks domains on Gβγ that interact with MT
filaments, and that the green labeling represents Gβγ
domains that are not interacting directly with MTs but
projecting from MT walls. These possibilities notwith-
standing, it is reasonable to suggest on the basis of this
unique labeling pattern as well as on previous in-vitro
results [24] that Gβγ induces neurite outgrowth through
its ability to interact with tubulin/MTs and stimulate
MT assembly.

Gβγ interacts with MTs in hippocampal and cerebellar
neurons cultured from rat brains
Although PC12 cells have been used extensively to study
the mechanism of neuronal outgrowth and differenti-
ation, neurons are more complex and give rise to a “den-
dritic tree” and an axon that may branch hundreds of
times before it terminates. The axon terminal contains
synapses—specialized structures that release neurotrans-
mitters in order to communicate with target neurons.
Thus, neurons are capable of interacting to form the
complex neuronal networks necessary for the processing
and transmission of cellular signals. To precisely identify
the role of Gβγ-MTs interactions in neuronal morph-
ology and functioning, it is important to demonstrate
whether this interaction occurs in neurons. Therefore, as
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a first step we established neuronal primary cultures from
newborn rat brains, specifically from the cerebellum and
hippocampus. These brain regions were selected because
they have been extensively validated as cell-culture models
for studying the role of the cytoskeleton in neuronal po-
larity and axonal development [48-50]. In addition, these
two brain regions are associated with different functions.
While the hippocampus is involved in memory formation
and neural plasticity, the cerebellum is responsible for
motor control, posture, and balance [51,52]. As described
with PC12 cells, confocal microscopy, subcellular frac-
tionation, and co-immunoprecipitation analysis were
performed to determine the co-localization/interactions of
Gβγ with MTs in hippocampal and cerebellar neurons.
We found that Gβγ co-localizes very intensely with
MTs in the neuronal processes in hippocampal neurons
(Figure 8A, panels c and c’). Co-immunoprecipitation ana-
lysis using MT and ST fractions indicates that Gβγ
interacts with both MTs and STs in hippocampal neu-
rons (Figure 8B). In cerebellar neurons, both confocal
microscopy (Figure 8C) and co-immunoprecipitation
analyses (Figure 8D) indicate a weak association of Gβγ
with MTs.

Discussion
The results presented here demonstrate that the regu-
lated interaction of Gβγ with MTs may be critical for
neurite outgrowth and differentiation, and that NGF
could facilitate the process by promoting this interaction.
In addition, prenylated methylated protein methyl esterase
(PMPMEase) appears to be a critical regulator of this
interaction. This conclusion is supported by four main
lines of evidence: (1) NGF-induced neurite outgrowth
Figure 8 Gβγ interacts with MTs in primary hippocampal and cerebel
cerebellum (C, D) of rat brains were prepared as described in the methods
confocal microscopy using anti-tubulin (red) and anti-Gβ (green) antibodie
(c’, f’) depicts Gβγ-tubulin co-localization in the neuronal process in hippo
(MT) and soluble tubulin (ST) fractions were prepared from hippocampal (B
amount of proteins from each fraction were subjected to co-immunopreci
(No ab) followed by an immunoblot analysis of immunoprecipitates (IP) an
promotes the interaction of Gβγ with MTs and stimu-
lates MT assembly, (2) Gβγ − binding peptides affect
MT organization and neurite formation, (3) inhibitors
of PMPMEase (an enzyme involved in the prenylation
pathway) disrupts Gβγ and MT organization and neur-
ite outgrowth, and (4) overexpression of Gβγ induces
neurite outgrowth in the absence of NGF.
Although Gβγ has been shown to bind to tubulin

and promote MT assembly in vitro and in PC12 cells
[24-26,53], the functional implication of this inter-
action has not been demonstrated. Reports from sev-
eral laboratories have indicated the involvement of
Gβγ in neuronal development and differentiation [17,54],
and recently Gβ1-deficient mice have been shown to have
neural-tube defects [55]. Earlier, it was shown that im-
paired Gβγ signaling promoted neurogenesis in the devel-
oping neocortex and increased neuronal differentiation of
progenitor cells [54]. Our data suggest that the interaction
of Gβγ with MTs and its ability to stimulate MT assembly
may provide a mechanism by which Gβγ regulates neur-
onal differentiation. Based on our high-resolution image
analysis of the neuronal processes induced by overexpres-
sion of Gβγ (Figure 7), it appears that MT filaments and
Gβγ interact throughout the neuronal processes. Gβγ
labeling was also observed side by side with MT labeling
from all directions. This labeling pattern appears to sup-
port our earlier in-vitro results, which indicate that Gβγ
binds on the microtubule wall [24]. The observed inter-
action of Gβγ with MTs in hippocampal and cerebellar
neurons (Figure 8) further supports the role of Gβγ-MT
interaction in neuronal development and differentiation.
It was observed that overexpression of Gβ1γ1 also in-

duced neurite formation although to a lesser extent than
lar neurons. Neuronal primary cultures from hippocampus (A, B) and
. Hippocampal (A) and cerebellar (C) neurons were processed for
s. Areas of overlay appear yellow. The enlarged view of the white boxes
campal and cerebellar neurons. The scale bar is 20 μm. Microtubules
) and cerebellar (D) neurons as described in the methods. Equal
pitation using anti-Gβ antibody or in the absence of primary antibody
d supernatants (SUP) using anti-α-tubulin antibody (B, D).
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Gβ1γ2-overexpressed cells as observed by live microscopy
and quantitative analysis of neurite length (Figure 6B-D).
Using purified proteins (in vitro) we had previously dem-
onstrated earlier that only β1γ2 but not β1γ1 binds to
tubulin with high affinity and stimulates MT assembly
[24,25]. However, in vivo, overexpressed β1 or γ1 may
interact with endogenous β or γ subtypes to some degree
to form various βγ combinations including β1γ2, which
could be responsible for the observed effect of β1γ1 over-
expression (neurite formation) in PC12 cells. Furthermore,
it is likely that the weaker affinity of Gβ1γ1 with tubulin
observed in vitro using purified proteins [24,25] became
amplified in the presence of other cellular component(s)
in vivo. Nonetheless, the results clearly demonstrate that
the Gβ1γ2 is more potent in inducing neurite outgrowth
compared to Gβ1γ1.
Previously we have shown that prenylation and further

carboxy terminal processing (methylation) of the γ sub-
unit of Gβγ are important for interaction with MTs and
stimulation of MT assembly in vitro [24]. We decided to
target the post-prenylation processing enzyme PMPMEase
in this study for two reasons. First, although prenylation
has been studied extensively because of the prevalence of
prenylated proteins in cancer biology—and the prenyl
transferase enzyme has been targeted for clinical trials—
the results so far have not been promising; therefore,
attention has recently been diverted to post-prenylation
pathways. The enzyme involved in methylation of the pre-
nylated protein, isoprenylcysteine carboxyl methyltransfer-
ase (ICMT), is now being studied for cancer metastasis
and results appear to be promising [56]. More recent
studies have indicated that targeting ICMT might be
useful in treating the rare genetic disease progeria [57].
Second, inhibitors for PMPMEase have recently been syn-
thesized and shown to induce degeneration of human
neuroblastoma SHSY5Y cells [27]. Although the γ subunit
of Gβγ may not be the only target of PMPMEase (the Rho
and Ras families of GTPases also undergo prenylation and
subsequent methylation/demethylation), based on previous
findings, the major protein that undergoes in-vivo methyla-
tion in rat brains in response to injection of endogenous
methyl donor S-adenosyl methionine is a molecule with a
molecular weight comparable to that of the γ subunit of G
proteins [58,59]. Therefore, it is likely that the γ subunit of
the G protein was a major target of PMPMEase inhib-
ition in our experiment. We found that NGF-induced
neurites are not equally susceptible to GRK2i and
PMPMEase inhibitors (Figures 3B, C and 4B, C). Careful
analysis indicates that while the percentage of cells bear-
ing neurites was affected significantly in the presence of
all three inhibitors, the average neurite lengths were
modestly affected. It is likely that GRK2i or PMPMEase
inhibitors inhibited the growing neurites and blocked
neurite formation. On the other hand, inhibitors did not
significantly affect longer neurites, which are relatively
stable.
The dramatic rearrangement of MTs during neuronal

differentiation is critical for vesicular transport, neuro-
transmitter release, and communication at synapse. Recent
results suggest that Gβγ regulates the formation of SNARE
complex, an essential step for neurotransmitter release of a
synapse [60,61]. More recently, Gβγ has been shown to in-
hibit dopamine transporter activity [43]. Although it is not
clear whether these events are interlinked, it is tempting to
speculate that signals originating from cell-surface recep-
tors utilize Gβγ to induce specific changes in MT assembly
and organization in axons, which may in turn contribute
to the Gβγ-dependent transport and neurotransmitter re-
lease of a synapse. Gβγ is known to activate a diverse array
of effector molecules, including adenylate cyclases, phos-
pholipases, PI3Kinase, and ion channels. Future investiga-
tion will be important to understand how these effector
systems influence Gβγ-dependent regulation of MTs and
neuronal differentiation. Recent results have indicated that
MT assembly is severely compromised in the early stages
of Alzheimer’s and Parkinson’s diseases [62-65]. Defects
in MT-based transport is thought to be associated with
many neurological disorders including Alzheimer’s dis-
ease, Huntington’s disease, and ALS [66-68] and disrup-
tion of the underlying microtubule network could be one
way the transport is impaired [68]. We propose that the
altered interaction of Gβγ with MTs may cause disruption
of MTs and trigger an early stage of neurodegeneration.
PMPMEase, which appears to regulate this interaction,
may serve as a potential target for therapeutic intervention
against neurodegenerative disorders.

Conclusion
MTs play a key role in maintaining the highly asymmetric
shape and structural polarity of neurons that are essential
for neuronal functions. The process by which MT structure
is remodeled in neurons is a central question in cell biology
and our result suggests that Gβγ may play a role in this
process. GPCRs as well as G protein subunits are abundant
in neurons and have also been shown to regulate neurite
outgrowth. The results presented here identify Gβγ as a
potential key molecule in neurons that may utilize extra-
cellular signals for the rearrangement of microtubules
necessary for neuronal outgrowth and differentiation.
Additional files

Additional file 1: Effect of preincubation of GRK2i on NGF-induced
neuronal differentiation. PC12 cells were pre-incubated with GRK2i for
2 h followed by 1-day treatment with NGF (100 ng/ml). The cells were
then fixed and double labeled with anti-tubulin (red) and anti-Gβ (green)
antibodies, and processed for confocal microscopy. Using Zeiss ZEN
software, neurites were traced and measured, and the average

http://www.biomedcentral.com/content/supplementary/s12868-014-0132-4-s1.tiff
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neurite length and percent of cells bearing neurites were determined.
*p value < 0.05; ***p value < 0.001 when compared to control.

Additional file 2: Effect of PMPMEase inhibitors on preformed
neurites. PC12 cells were treated with 100 ng/mL of NGF for two
consecutive days. Subsequently, cells were treated overnight with
PMPMEase inhibitors, L-23 and L-28 (5 μM, and 10 μM), or the prototypical
molecule PMSF (10 μM) and the cells were processed for confocal
microscopy using anti-tubulin (red) and anti-Gβ (green) antibodies as
described in the methods. Using Zeiss ZEN software, neurites were
traced and measured, and the average neurite length and percent of
cells bearing neurites were estimated. The differences between
experimental conditions were assessed by one-way ANOVA. *p < 0.05
when compared to control or PMSF.

Additional file 3: PC12 cells were treated overnight with PMPMEase
inhibitors, L-23 and L-28 (5 μM, or 10 μM), or the prototypical
molecule PMSF (10 μM) as indicated in the figure. The cells were
then fixed and double labeled with anti-tubulin (red) and anti-Gβ (green)
antibodies and DAPI was used for nuclear staining (blue). Co-localization
patterns are also shown in the merged images. PMSF did not seem to
have any significant effect on organization of MT structure, Gβγ
localization, and cellular morphology of PC12 cells (a–d). However, both
L-23 and L-28 altered organization of the MTs and Gβγ similar to that
observed in NGF-differentiated PC12 cells. Cellular aggregation was also
evident in the presence of L-23 or L-28. Gβγ was concentrated in the
cell-cell contact region in the presence of 10 μM L-28 and could be
responsible for mediating cellular aggregation.

Additional file 4: Co-localization of YFP-β1γ2 with MTs in PC12 cells
overexpressing Gβγ. The movie was generated by reconstructing
high-resolution images using Volocity 3D Image Analysis software as
indicated in the methods. Localization of overexpressed Gβγ (green) and
its association with MTs (red) was clearly visible in the neurite by panning,
zooming into, and rotating the 3-D image. Two cells are shown side by side,
one with a long thin neurite, and the second cell with very short neurites.
Both cells exhibit a similar labeling pattern. The movie shows that MTs and
Gβγ interact throughout the neurite, as evidenced by clear yellow labeling.
Gβγ labeling (green) was also observed alongside yellow labeling throughout
the neuronal process, suggesting that Gβγ binds to MTs throughout the neurite.
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