81 research outputs found

    Erkennen von SchĂ€tzstrategien bei GrundschĂŒler*innen durch Eyetracking – eine Machbarkeitsstudie

    Get PDF
    Das SchĂ€tzen von LĂ€ngen ist eine relevante FĂ€higkeit zur BewĂ€ltigung vieler Situationen im Alltag. So war fĂŒr ein sicheres Zusammenleben wĂ€hrend der Corona-Pandemie das AbschĂ€tzen eines 1,5 m langen Abstands zu anderen Personen wichtig und bei der Aussaat mĂŒssen fĂŒr ein optimales Pflanzenwachstum bestimmte AbstĂ€nde zwischen den Pflanzen eingehalten werden. Um in diesen SchĂ€tzsituationen zu möglichst passenden SchĂ€tzungen zu gelangen, sind verschiedene Komponenten relevant – darunter auch das Heranziehen geeigneter SchĂ€tzstrategien. So deuten erste Ergebnisse darauf hin, dass die Strategiewahl mit der SchĂ€tzgenauigkeit zusammenhĂ€ngt (Heid, 2018). Um hierfĂŒr belastbare Ergebnisse zu generieren, mĂŒssen die kognitiven SchĂ€tzprozesse erfassbar gemacht werden. Verbale ErklĂ€rungen der Kinder sind dabei von vielen Störfaktoren wie beispielsweise der sprachlichen FĂ€higkeit abhĂ€ngig. DarĂŒber hinaus kann das laute Denken den SchĂ€tzprozess und das SchĂ€tzergebnis beeinflussen, indem die Kinder zur Reflexion ĂŒber ihr Vorgehen angeregt werden. Ein alternatives Herangehen fĂŒr das Identifizieren von Strategien beim SchĂ€tzen von LĂ€ngen kann die Erfassung der Blickbewegungen der Kinder (Eyetracking) sein. Ob das Eyetracking fĂŒr eine Erfassung von Strategien beim SchĂ€tzen von LĂ€ngen geeignet ist, soll hier durch eine Machbarkeitsstudie analysiert werden

    Impact of IL8 and IL8-Receptor alpha polymorphisms on the genetics of bronchial asthma and severe RSV infections

    Get PDF
    BACKGROUND: Interleukin 8 (IL8) belongs to the family of chemokines. It mediates the activation and migration of neutrophils from peripheral blood into tissue and hereby plays a pivotal role in the initiation of inflammation. Thus it is important in inflammatory lung diseases like bronchial asthma or severe infections by Respiratory Syncytial Virus (RSV). IL8 acts through binding to the IL8-Receptor alpha (IL8RA). For both genes association with asthma has been described. In addition, IL8 has been found in association with RSV bronchiolitis. The aim of our study was to test both genes for association with asthma and severe RSV infections. In addition we were interested in whether a common genetic background of both diseases exists in regards to these genes. METHODS: We genotyped the two IL8 promotor polymorphisms -251A/T and -781C/T and the three amino acid variants M31R, S276T and R335C in IL8RA on 322 children with asthma, 131 infants with severe RSV associated diseases and 270 controls. Statistical analyses made use of the Armitage's trend test for single polymorphisms and FAMHAP for calculations of haplotypes. RESULTS: We found association of the IL8 polymorphism -781C/T as well as IL8 haplotypes with asthma (p = 0.011 and p = 0.036, respectively). In addition, direct comparison of the asthmatic population with the RSV population revealed significant differences, both for -781C/T alone (p = 0.034) and IL8 haplotypes (p = 0.005). The amino acid variants in IL8RA were evenly distributed in between all three populations. CONCLUSION: We conclude from our data that IL8 might play a role in the genetic predisposition to asthma and that these effects are different or even opposite to the effects on severe RSV diseases. Furthermore, IL8RA is unlikely to play a major role in the genetics of either disease

    Information transfer by vector spin chirality in finite magnetic chains

    Get PDF
    Vector spin chirality is one of the fundamental characteristics of complex magnets. For a one-dimensional spin-spiral state it can be interpreted as the handedness, or rotational sense of the spiral. Here, using spin-polarized scanning tunneling microscopy, we demonstrate the occurrence of an atomic-scale spin-spiral in finite individual bi-atomic Fe chains on the (5x1)-Ir(001) surface. We show that the broken inversion symmetry at the surface promotes one direction of the vector spin chirality, leading to a unique rotational sense of the spiral in all chains. Correspondingly, changes in the spin direction of one chain end can be probed tens of nanometers away, suggesting a new way of transmitting information about the state of magnetic objects on the nanoscale.Comment: accepted by Physical Review Letter

    SARS-CoV-2 variant Alpha has a spike-dependent replication advantage over the ancestral B.1 strain in human cells with low ACE2 expression

    Get PDF
    Epidemiological data demonstrate that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) Alpha and Delta are more transmissible, infectious, and pathogenic than previous variants. Phenotypic properties of VOC remain understudied. Here, we provide an extensive functional study of VOC Alpha replication and cell entry phenotypes assisted by reverse genetics, mutational mapping of spike in lentiviral pseudotypes, viral and cellular gene expression studies, and infectivity stability assays in an enhanced range of cell and epithelial culture models. In almost all models, VOC Alpha spread less or equally efficiently as ancestral (B.1) SARS-CoV-2. B.1. and VOC Alpha shared similar susceptibility to serum neutralization. Despite increased relative abundance of specific sgRNAs in the context of VOC Alpha infection, immune gene expression in infected cells did not differ between VOC Alpha and B.1. However, inferior spreading and entry efficiencies of VOC Alpha corresponded to lower abundance of proteolytically cleaved spike products presumably linked to the T716I mutation. In addition, we identified a bronchial cell line, NCI-H1299, which supported 24-fold increased growth of VOC Alpha and is to our knowledge the only cell line to recapitulate the fitness advantage of VOC Alpha compared to B.1. Interestingly, also VOC Delta showed a strong (595-fold) fitness advantage over B.1 in these cells. Comparative analysis of chimeric viruses expressing VOC Alpha spike in the backbone of B.1, and vice versa, showed that the specific replication phenotype of VOC Alpha in NCI-H1299 cells is largely determined by its spike protein. Despite undetectable ACE2 protein expression in NCI-H1299 cells, CRISPR/Cas9 knock-out and antibody-mediated blocking experiments revealed that multicycle spread of B.1 and VOC Alpha required ACE2 expression. Interestingly, entry of VOC Alpha, as opposed to B.1 virions, was largely unaffected by treatment with exogenous trypsin or saliva prior to infection, suggesting enhanced resistance of VOC Alpha spike to premature proteolytic cleavage in the extracellular environment of the human respiratory tract. This property may result in delayed degradation of VOC Alpha particle infectivity in conditions typical of mucosal fluids of the upper respiratory tract that may be recapitulated in NCI-H1299 cells closer than in highly ACE2-expressing cell lines and models. Our study highlights the importance of cell model evaluation and comparison for in-depth characterization of virus variant-specific phenotypes and uncovers a fine-tuned interrelationship between VOC Alpha- and host cell-specific determinants that may underlie the increased and prolonged virus shedding detected in patients infected with VOC Alpha

    The Added Value of Large-Eddy and Storm-Resolving Models for Simulating Clouds and Precipitation

    Get PDF
    More than one hundred days were simulated over very large domains with fine (0.156 km to 2.5 km) grid spacing for realistic conditions to test the hypothesis that storm (kilometer) and large-eddy (hectometer) resolving simulations would provide an improved representation of clouds and precipitation in atmospheric simulations. At scales that resolve convective storms (storm-resolving for short), the vertical velocity variance becomes resolved and a better physical basis is achieved for representing clouds and precipitation. Similarly to past studies we found an improved representation of precipitation at kilometer scales, as compared to models with parameterized convection. The main precipitation features (location, diurnal cycle and spatial propagation) are well captured already at kilometer scales, and refining resolution to hectometer scales does not substantially change the simulations in these respects. It does, however, lead to a reduction in the precipitation on the time-scales considered – most notably over the ocean in the tropics. Changes in the distribution of precipitation, with less frequent extremes are also found in simulations incorporating hectometer scales. Hectometer scales appear to be more important for the representation of clouds, and make it possible to capture many important aspects of the cloud field, from the vertical distribution of cloud cover, to the distribution of cloud sizes, and to the diel (daily) cycle. Qualitative improvements, particularly in the ability to differentiate cumulus from stratiform clouds, are seen when one reduces the grid spacing from kilometer to hectometer scales. At the hectometer scale new challenges arise, but the similarity of observed and simulated scales, and the more direct connection between the circulation and the unconstrained degrees of freedom make these challenges less daunting. This quality, combined with already improved simulation as compared to more parameterized models, underpins our conviction that the use and further development of storm-resolving models offers exciting opportunities for advancing understanding of climate and climate change

    Simulating long-term carbon nitrogen and phosphorus biogeochemical cycling in agricultural environments

    Get PDF
    Understanding how agricultural practices alter biogeochemical cycles is vital for maintaining land productivity, food security, and other ecosystem services such as carbon sequestration. However, these are complex, highly coupled long-term processes that are difficult to observe or explore through empirical science alone. Models are required that capture the main anthropogenic disturbances, whilst operating across regions and long timescales, simulating both natural and agricultural environments, and shifts among these. Many biogeochemical models neglect agriculture or interactions between carbon and nutrient cycles, which is surprising given the scale of intervention in nitrogen and phosphorus cycles introduced by agriculture. This gap is addressed here, using a plant-soil model that simulates integrated soil carbon, nitrogen and phosphorus (CNP) cycling across natural, semi-natural and agricultural environments. The model is rigorously tested both spatially and temporally using data from long-term agricultural experiments across temperate environments. The model proved capable of reproducing the magnitude of and trends in soil nutrient stocks, and yield responses to nutrient addition. The model has potential to simulate anthropogenic effects on biogeochemical cycles across northern Europe, for long timescales (centuries) without site-specific calibration, using easily accessible input data. The results demonstrate that weatherable P from parent material has a considerable effect on modern pools of soil C and N, despite significant perturbation of nutrient cycling from agricultural practices, highlighting the need to integrate both geological and agricultural processes to understand effects of land-use change on food security, C storage and nutrient sustainability. The results suggest that an important process or source of P is currently missing in our understanding of agricultural biogeochemical cycles. The model could not explain how yields were sustained in plots with low P fertiliser addition. We suggest that plant access to organic P is a key uncertainty warranting further research, particularly given sustainability concerns surrounding rock sources of P fertiliser

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • 

    corecore