53 research outputs found

    DNA methylation-associated colonic mucosal immune and defense responses in treatment-naïve pediatric ulcerative colitis

    Get PDF
    Inflammatory bowel diseases (IBD) are emerging globally, indicating that environmental factors may be important in their pathogenesis. Colonic mucosal epigenetic changes, such as DNA methylation, can occur in response to the environment and have been implicated in IBD pathology. However, mucosal DNA methylation has not been examined in treatment-naïve patients. We studied DNA methylation in untreated, left sided colonic biopsy specimens using the Infinium HumanMethylation450 BeadChip array. We analyzed 22 control (C) patients, 15 untreated Crohn’s disease (CD) patients, and 9 untreated ulcerative colitis (UC) patients from two cohorts. Samples obtained at the time of clinical remission from two of the treatment-naïve UC patients were also included into the analysis. UC-specific gene expression was interrogated in a subset of adjacent samples (5 C and 5 UC) using the Affymetrix GeneChip PrimeView Human Gene Expression Arrays. Only treatment-naïve UC separated from control. One-hundred-and-twenty genes with significant expression change in UC (> 2-fold, P < 0.05) were associated with differentially methylated regions (DMRs). Epigenetically associated gene expression changes (including gene expression changes in the IFITM1, ITGB2, S100A9, SLPI, SAA1, and STAT3 genes) were linked to colonic mucosal immune and defense responses. These findings underscore the relationship between epigenetic changes and inflammation in pediatric treatment-naïve UC and may have potential etiologic, diagnostic, and therapeutic relevance for IBD

    MicroRNA-124 Regulates STAT3 Expression and Is Down-regulated in Colon Tissues of Pediatric Patients With Ulcerative Colitis

    Get PDF
    Background & Aims - Altered levels and functions of microRNAs (miRs) have been associated with inflammatory bowel diseases (IBDs), although little is known about their roles in pediatric IBD. We investigated whether colonic mucosal miRs are altered in children with ulcerative colitis (UC). Methods - We used a library of 316 miRs to identify those that regulate phosphorylation of STAT3 in NCM460 human colonocytes incubated with interleukin-6. Levels of miR-124 were measured by real-time PCR analysis of colon biopsies from pediatric and adult patients with UC and patients without IBD (controls), and of HCT-116 colonocytes incubated with 5-aza-2’-deoxycytidine. Methylation of the MIR124 promoter was measured by quantitative methylation-specific PCR. Results - Levels of phosphorylated STAT3 and the genes it regulates (encoding VEGF, BCL2, BCLXL, and MMP9) were increased in pediatric patients with UC, compared to control tissues. Overexpression of miR-124, let-7, miR-125, miR-26, or miR-101 reduced STAT3 phosphorylation by ≥75% in NCM460 cells; miR-124 had the greatest effect. miR-124 was downregulated specifically in colon tissues from pediatric patients with UC and directly targeted STAT3 mRNA. Levels of miR-124 were decreased whereas levels of STAT3 phosphorylation increased in colon tissues from pediatric patients with active UC, compared to those with inactive disease. Furthermore, levels of miR-124 and STAT3 were inversely correlated in mice with experimental colitis. Downregulation of miR-124 in tissues from children with UC was attributed to hypermethylation of its promoter region. Incubation of HCT-116 colonocytes with 5-aza-2’ deoxycytidine upregulated miR-124 and reduced levels of STAT3 mRNA. Conclusions - MiR-124 appears to regulate the expression of STAT3. Reduced levels of miR-124 in colon tissues of children with active UC appear to increase expression and activity of STAT3, which could promote inflammation and pathogenesis of UC in children

    Colonoscopic surveillance improves survival after colorectal cancer diagnosis in inflammatory bowel disease

    Get PDF
    Item does not contain fulltextBACKGROUND: Colonoscopic surveillance provides the best practical means for preventing colorectal cancer (CRC) in inflammatory bowel disease (IBD) patients. Strong evidence for improved survival from surveillance programmes is sparse. METHOD: The aim of this study was to compare tumour stage and survival of IBD patients with CRC who were a part of a surveillance programme with those who were not. A nationwide pathology database (PALGA (pathologisch anatomisch landelijk geautomatiseerd archief)) was consulted to identify IBD patients with CRC treated in all eight university hospitals in The Netherlands over a period of 15 years. Patients were assigned to the surveillance group when they had undergone one or more surveillance colonoscopies before a diagnosis of CRC. Patients who had not undergone surveillance served as controls. Tumour stage and survival were compared between the two groups. RESULTS: A total of 149 patients with IBD-associated CRC were identified. Twenty-three had had colonoscopic surveillance before CRC was discovered. The 5-year CRC-related survival rate of patients in the surveillance group was 100% compared with 74% in the non-surveillance group (P=0.042). In the surveillance group, only one patient died as a consequence of CRC compared with 29 patients in the control group (P=0.047). In addition, more early tumour stages were found in the surveillance group (P=0.004). CONCLUSIONS: These results provide evidence for improved survival from colonoscopic surveillance in IBD patients by detecting CRC at a more favourable tumour stage
    corecore