450 research outputs found

    University-State Child Welfare Training Partnerships: The Challenge of Matching Dollar Contributions

    Get PDF
    Universities are uniquely positioned to provide the very best training opportunities to public child welfare workers. However, university–child welfare agency training partnerships require a significant commitment of time and resources by university personnel at a time of extensive state cuts to public higher education. This national survey of university partnership administrators found significant differences among university respondents involving length of the contractual relationship, matching dollar requirements, and overall satisfaction with the training partnership

    Immunomodulatory mechanisms of lactobacilli

    Get PDF
    <p>Abstract</p> <p>Over the past decade it has become clear that lactobacilli and other probiotic and commensal organisms can interact with mucosal immune cells or epithelial cells lining the mucosa to modulate specific functions of the mucosal immune system. The most well understood signalling mechanisms involve the innate pattern recognition receptors such as Toll-like receptors, nucleotide oligomerization domain-like receptors and C-type lectin receptors. Binding of microbe-associated molecular patterns with these receptors can activate antigen presenting cells and modulate their function through the expression of surface receptors, secreted cytokines and chemokines. <it>In vitro</it> the cytokine response of human peripheral blood mononuclear cells and dendritic cells to lactobacilli can be strikingly different depending on both the bacterial species and the strain. Several factors have been identified in lactobacilli that influence the immune response <it>in vitro</it> and <it>in vivo</it> including cell surface carbohydrates, enzymes modifying the structure of lipoteichoic acids and metabolites. In mice mechanistic studies point to a role for the homeostatic control of inducible T regulatory cells in the mucosal tissues as one possible immunomodulatory mechanism. Increasing evidence also suggests that induction of epithelial signalling by intestinal lactobacilli can modulate barrier functions, defensin production and regulate inflammatory signalling. Other probiotic mechanisms include modulation of the T cell effector subsets, enhancement of humoral immunity and interactions with the epithelial-associated dendritic cells and macrophages. A major challenge for the future will be to gain more knowledge about the interactions occurring between lactobacilli and the host <it>in vivo</it> and to understand the molecular basis of innate signalling in response to whole bacteria which trigger multiple signalling pathways.</p

    Concordance Among Bioelectrical Impedance Analysis Measures Of Percent Body Fat In Athletic Young Adults

    Get PDF
    International Journal of Exercise Science 12(4): 324-331, 2019. The purpose of this investigation was to determine the agreement among three bioelectrical impedance analysis devices (BIA) in athletic young adults. Fifty-one participants (26 men and 25 women) were assessed for percent body fat (PBF) using an arm-to-arm bipolar single-frequency device (ABIA), a leg-to-leg single-frequency device (LBIA), and an octopolar multi-frequency BIA device (MFBIA). PBF was measured with the three devices in a randomized, counterbalanced order. Repeated measures ANOVA revealed significant (p \u3c 0.001) differences in PBF estimates among all devices (ABIA = 19.1 ± 7.2%, LBIA = 21.6 ±7.5%, and MFBIA = 22.9 ± 8.8%). Pearson’s Correlations revealed a strong relationship between ABIA and MFBIA in both men (r = 0.948) and women (r = 0.947) and a moderately-strong relationship between LBIA and MFBIA (r = 0.870 and 0.679, respectively). Lin’s concordance coefficient revealed moderately-strong concordance between ABIA and MFBIA in men (ρc= 0.800) and women (ρc= 0.681) and between LBIA and MFBIA (ρc = 0.846 and ρc= 0.651, respectively). These data indicate a strong agreement among all three devices, suggesting that any of them could be used to track changes in PBF over time. However, the significant differences in PBF values among devices imply that best practice for monitoring body composition should be to use one device consistently over time for a reliable assessment

    AI-2 does not function as a quorum sensing molecule in Campylobacter jejuni during exponential growth in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Campylobacter jejuni </it>contains a homologue of the <it>luxS </it>gene shown to be responsible for the production of the signalling molecule autoinducer-2 (AI-2) in <it>Vibrio harveyi </it>and <it>Vibrio cholerae</it>. The aim of this study was to determine whether AI-2 acted as a diffusible quorum sensing signal controlling <it>C. jejuni </it>gene expression when it is produced at high levels during mid exponential growth phase.</p> <p>Results</p> <p>AI-2 activity was produced by the parental strain NCTC 11168 when grown in rich Mueller-Hinton broth (MHB) as expected, but interestingly was not present in defined Modified Eagles Medium (MEM-α). Consistent with previous studies, the <it>luxS </it>mutant showed comparable growth rates to the parental strain and exhibited decreased motility halos in both MEM-α and MHB. Microarray analysis of genes differentially expressed in wild type and <it>luxS </it>mutant strains showed that many effects on mRNA transcript abundance were dependent on the growth medium and linked to metabolic functions including methionine metabolism. Addition of exogenously produced AI-2 to the wild type and the <it>luxS </it>mutant, growing exponentially in either MHB or MEM-α did not induce any transcriptional changes as analysed by microarray.</p> <p>Conclusion</p> <p>Taken together these results led us to conclude that there is no evidence for the role of AI-2 in cell-to-cell communication in <it>C. jejuni </it>strain NCTC 11168 under the growth conditions used, and that the effects of the <it>luxS </it>mutation on the transcriptome are related to the consequential loss of function in the activated methyl cycle.</p

    The Response Regulator YycF Inhibits Expression of the Fatty Acid Biosynthesis Repressor FabT in Streptococcus pneumoniae

    Get PDF
    The YycFG (also known as WalRK, VicRK, MicAB, or TCS02) two-component system (TCS) is highly conserved among Gram-positive bacteria with a low G+C content. In Streptococcus pneumoniae the YycF response regulator has been reported to be essential due to its control of pcsB gene expression. Previously we showed that overexpression of yycF in S. pneumoniae TIGR4 altered the transcription of genes involved in cell wall metabolism and fatty acid biosynthesis, giving rise to anomalous cell division and increased chain length of membrane fatty acids. Here, we have overexpressed the yycFG system in TIGR4 wild-type strain and yycF in a TIGR4 mutant depleted of YycG, and analyzed their effects on expression of proteins involved in fatty acid biosynthesis during activation of the TCS. We demonstrate that transcription of the fab genes and levels of their products were only altered in the YycF overexpressing strain, indicating that the unphosphorylated form of YycF is involved in the regulation of fatty acid biosynthesis. In addition, DNA-binding assays and in vitro transcription experiments with purified YycF and the promoter region of the FabTH-acp operon support a direct inhibition of transcription of the FabT repressor by YycF, thus confirming the role of the unphosphorylated form in transcriptional regulation.This work was supported by the Spanish Ministry of Industry and Laboratorios SALVAT within the European project Eureka ÎŁ! 3554-DEADBUGS by the Spanish Ministry of Economics and Competitiveness grants AGL2012-40084C03-01 and AGL2015-65010-C3-1-R, and by the European Union grant FP7-PEOPLE-ITN-2008-238490. The work at the CIB was performed under the auspices of the Consejo Superior de Investigaciones CientĂ­ficas.S

    Active Human and Porcine Serum Induce Competence for Genetic Transformation in the Emerging Zoonotic Pathogen Streptococcus suis.

    Get PDF
    The acquisition of novel genetic traits through natural competence is a strategy used by bacteria in microbe-rich environments where microbial competition, antibiotics, and host immune defenses threaten their survival. Here, we show that virulent strains of Streptococcus suis, an important zoonotic agent and porcine pathogen, become competent for genetic transformation with plasmid or linear DNA when cultured in active porcine and human serum. Competence was not induced in active fetal bovine serum, which contains less complement factors and immunoglobulins than adult serum and was strongly reduced in heat-treated or low-molecular weight fractions of active porcine serum. Late competence genes, encoding the uptake machinery for environmental DNA, were upregulated in the active serum. Competence development was independent of the early competence regulatory switch involving XIP and ComR, as well as sigma factor ComX, suggesting the presence of an alternative stress-induced pathway for regulation of the late competence genes required for DNA uptake

    Transcriptomics in serum and culture medium reveal shared and differential gene regulation in pathogenic and commensal Streptococcus suis

    Get PDF
    Streptococcus suis colonizes the upper respiratory tract of healthy pigs at high abundance but can also cause opportunistic respiratory and systemic disease. Disease-associated S. suis reference strains are well studied, but less is known about commensal lineages. It is not known what mechanisms enable some S. suis lineages to cause disease while others persist as commensal colonizers, or to what extent gene expression in disease-associated and commensal lineages diverge. In this study we compared the transcriptomes of 21S. suis strains grown in active porcine serum and Todd–Hewitt yeast broth. These strains included both commensal and pathogenic strains, including several strains of sequence type (ST) 1, which is responsible for most cases of human disease and is considered to be the most pathogenic S. suis lineage. We sampled the strains during their exponential growth phase and mapped RNA sequencing reads to the corresponding strain genomes. We found that the transcriptomes of pathogenic and commensal strains with large genomic divergence were unexpectedly conserved when grown in active porcine serum, but that regulation and expression of key pathways varied. Notably, we observed strong variation of expression across media of genes involved in capsule production in pathogens, and of the agmatine deiminase system in commensals. ST1 strains displayed large differences in gene expression between the two media compared to strains from other clades. Their capacity to regulate gene expression across different environmental conditions may be key to their success as zoonotic pathogens

    Organoids: a promising new in vitro platform in livestock and veterinary research.

    Get PDF
    Organoids are self-organizing, self-renewing three-dimensional cellular structures that resemble organs in structure and function. They can be derived from adult stem cells, embryonic stem cells, or induced pluripotent stem cells. They contain most of the relevant cell types with a topology and cell-to-cell interactions resembling that of the in vivo tissue. The widespread and increasing adoption of organoid-based technologies in human biomedical research is testament to their enormous potential in basic, translational- and applied-research. In a similar fashion there appear to be ample possibilities for research applications of organoids from livestock and companion animals. Furthermore, organoids as in vitro models offer a great possibility to reduce the use of experimental animals. Here, we provide an overview of studies on organoids in livestock and companion animal species, with focus on the methods developed for organoids from a variety of tissues/organs from various animal species and on the applications in veterinary research. Current limitations, and ongoing research to address these limitations, are discussed. Further, we elaborate on a number of fields of research in animal nutrition, host-microbe interactions, animal breeding and genomics, and animal biotechnology, in which organoids may have great potential as an in vitro research tool
    • 

    corecore