15 research outputs found
Variability in trough total and unbound teicoplanin concentrations and achievement of therapeutic drug monitoring targets in adult patients with hematological malignancy
The objective of this study was to explore the following aspects of teicoplanin use in patients with hematological malignancy: early attainment of target trough concentrations with current high-dose teicoplanin regimens, variability in unbound teicoplanin fractions, factors associated with observed total and unbound trough concentrations, efficacy and toxicity, and renal function estimation. This was a single-center, prospective study. Samples for determination of trough concentrations were taken on days 3, 4, 7, and 10. Total and unbound teicoplanin concentrations were determined using validated high-performance liquid chromatography methods. Regression analyses were used to identify the factors associated with the trough concentration. Thirty teicoplanin-treated adults with hematological malignancy were recruited. Despite the use of dosages higher than the conventional dosages, the proportions of patients with a trough concentration of >= 20 mg/liter at 48 h and at 72 h were 16.7% and 37.9%, respectively. Renal function was significantly negatively associated with total trough concentrations at 48 h and 72 h (P < 0.05). For an average hematological malignancy patient (creatinine clearance = 70 ml/min), sequential loading doses of at least 12 mg/kg of body weight may be needed to achieve early adequate exposure. In the absence of measured creatinine clearance, estimates obtained using the Cockcroft-Gault (total body weight) equation could prove to be an acceptable surrogate. The unbound fractions of teicoplanin were highly variable (3.4 to 18.8%). Higher unbound fractions were observed in patients with low serum albumin concentrations. Teicoplanin was well tolerated. Teicoplanin loading doses higher than those in current use appear to be necessary. Increased dosing is needed in patients with increased renal function. The high variability in protein binding supports the contention for therapeutic drug monitoring of unbound teicoplanin concentrations. (This study has been registered with EudraCT under registration no. 2013-004535-72.
Expression of NES-hTERT in Cancer Cells Delays Cell Cycle Progression and Increases Sensitivity to Genotoxic Stress
Telomerase is a reverse transcriptase associated with cellular immortality through telomere maintenance. This enzyme is activated in 90% of human cancers, and inhibitors of telomerase are currently in clinical trials to counteract tumor growth. Many aspects of telomerase biology have been investigated for therapy, particularly inhibition of the enzyme, but little was done regarding its subcellular shuttling. We have recently shown that mutations in the nuclear export signal of hTERT, the catalytic component of telomerase, led to a mutant (NES-hTERT) that failed to immortalize cells despite nuclear localization and catalytic activity. Expression of NES-hTERT in primary fibroblast resulted in telomere-based premature senescence and mitochondrial dysfunction. Here we show that expression of NES-hTERT in LNCaP, SQ20B and HeLa cells rapidly and significantly decreases their proliferation rate and ability to form colonies in soft agar while not interfering with endogenous telomerase activity. The cancer cells showed increased DNA damage at telomeric and extra-telomeric sites, and became sensitive to ionizing radiation and hydrogen peroxide exposures. Our data show that expression of NES-hTERT efficiently counteracts cancer cell growth in vitro in at least two different ways, and suggest manipulation with the NES of hTERT or its subcellular shuttling as a new strategy for cancer treatment
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Genomic–transcriptomic evolution in lung cancer and metastasis
Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic–transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary–metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis
The evolution of lung cancer and impact of subclonal selection in TRACERx
Lung cancer is the leading cause of cancer-associated mortality worldwide. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource
The evolution of non-small cell lung cancer metastases in TRACERx
Metastatic disease is responsible for the majority of cancer-related deaths. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse
Antibodies against endogenous retroviruses promote lung cancer immunotherapy
B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS). Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response
Population pharmacokinetics of total and unbound teicoplanin concentrations and dosing simulations in patients with haematological malignancy
To develop a pharmacokinetic model describing total and unbound teicoplanin concentrations in patients with haematological malignancy and to perform Monte Carlo simulations to evaluate target attainment of unbound trough concentrations with various dose regimens.This was a hospital-based clinical trial (EudraCT 2013-004535-72). The dosing regimen was 600/800 mg q12h for three doses then 600/800 mg daily. Serial total and unbound teicoplanin concentrations were collected. Maximum protein binding was estimated from serum albumin concentration. Population pharmacokinetic analyses and Monte Carlo simulations were conducted using Pmetrics®. Target total and unbound trough concentrations were ≥20 and ≥1.5 mg/L, respectively.Thirty adult patients were recruited with a mean (SD) bodyweight of 69.1 (15.8) kg, a mean (SD) CLCR of 72 (41) mL/min and a median (IQR) serum albumin concentration of 29 (4) g/L. A three-compartment complex binding pharmacokinetic model best described the concentration-time data. Total and unbound teicoplanin concentrations were related by serum albumin concentration and a dissociation constant. CLCR and bodyweight were supported as covariates for CL and volume of the central compartment, respectively. Dosing simulations showed that high CLCR was associated with reduced probability of achieving target total and unbound trough concentrations. Low serum albumin concentration was associated with a reduced probability of attaining target total but not unbound trough concentrations. A method to estimate the unbound teicoplanin concentration from the measured total concentration at different serum albumin concentration was demonstrated.Standard teicoplanin dosing regimens should be used with caution in patients with haematological malignancy. Bodyweight, CLCR and serum albumin concentration are important considerations for appropriate dosing
Towards an open grapevine information system.
Viticulture, like other fields of agriculture, is currently facing important challenges that will be addressed only through sustained, dedicated and coordinated research. Although the methods used in biology have evolved tremendously in recent years and now involve the routine production of large data sets of varied nature, in many domains of study, including grapevine research, there is a need to improve the findability, accessibility, interoperability and reusability (FAIR-ness) of these data. Considering the heterogeneous nature of the data produced, the transnational nature of the scientific community and the experience gained elsewhere, we have formed an open working group, in the framework of the International Grapevine Genome Program (www.vitaceae.org), to construct a coordinated federation of information systems holding grapevine data distributed around the world, providing an integrated set of interfaces supporting advanced data modeling, rich semantic integration and the next generation of data mining tools. To achieve this goal, it will be critical to develop, implement and adopt appropriate standards for data annotation and formatting. The development of this system, the GrapeIS, linking genotypes to phenotypes, and scientific research to agronomical and oeneological data, should provide new insights into grape biology, and allow the development of new varieties to meet the challenges of biotic and abiotic stress, environmental change, and consumer demand