142 research outputs found

    In Vivo Photoacoustic Imaging of Anterior Ocular Vasculature: A Random Sample Consensus Approach

    Get PDF
    Visualizing ocular vasculature is important in clinical ophthalmology because ocular circulation abnormalities are early signs of ocular diseases. Photoacoustic microscopy (PAM) images the ocular vasculature without using exogenous contrast agents, avoiding associated side effects. Moreover, 3D PAM images can be useful in understanding vessel-related eye disease. However, the complex structure of the multi-layered vessels still present challenges in evaluating ocular vasculature. In this study, we demonstrate a new method to evaluate blood circulation in the eye by combining in vivo PAM imaging and an ocular surface estimation method based on a machine learning algorithm: a random sample consensus algorithm. By using the developed estimation method, we were able to visualize the PA ocular vascular image intuitively and demonstrate layer-by-layer analysis of injured ocular vasculature. We believe that our method can provide more accurate evaluations of the eye circulation in ophthalmic applications. ? The Author(s) 2017.1110Ysciescopu

    Boundary Effects on Dynamic Behavior of Josephson-Junction Arrays

    Full text link
    The boundary effects on the current-voltage characteristics in two-dimensional arrays of resistively shunted Josephson junctions are examined. In particular, we consider both the conventional boundary conditions (CBC) and the fluctuating twist boundary conditions (FTBC), and make comparison of the obtained results. It is observed that the CBC, which have been widely adopted in existing simulations, may give a problem in scaling, arising from rather large boundary effects; the FTBC in general turn out to be effective in reducing the finite-size effects, yielding results with good scaling behavior. To resolve the discrepancy between the two boundary conditions, we propose that the proper scaling in the CBC should be performed with the boundary data discarded: This is shown to give results which indeed scale well and are the same as those from the FTBC.Comment: RevTex, Final version to appear in Phys. Rev.

    Autonomous stochastic resonance in fully frustrated Josephson-junction ladders

    Full text link
    We investigate autonomous stochastic resonance in fully frustrated Josephson-junction ladders, which are driven by uniform constant currents. At zero temperature large currents induce oscillations between the two ground states, while for small currents the lattice potential forces the system to remain in one of the two states. At finite temperatures, on the other hand, oscillations between the two states develop even below the critical current; the signal-to-noise ratio is found to display array-enhanced stochastic resonance. It is suggested that such behavior may be observed experimentally through the measurement of the staggered voltage.Comment: 6 pages, 11 figures, to be published in Phys. Rev.

    Quantum phase transitions in superconducting arrays under external magnetic fields

    Full text link
    We study the zero-temperature phase transitions of two-dimensional superconducting arrays with both the self- and the junction capacitances in the presence of external magnetic fields. We consider two kinds of excitations from the Mott insulating phase: charge-dipole excitations and single-charge excitations, and apply the second-order perturbation theory to find their energies. The resulting phase boundaries are found to depend strongly on the magnetic frustration, which measures the commensurate-incommensurate effects. Comparison of the obtained values with those in recent experiment suggests the possibility that the superconductor-insulator transition observed in experiment may not be of the Berezinskii-Kosterlitz-Thouless type. The system is also transformed to a classical three-dimensional XY model with the magnetic field in the time-direction; this allows the analogy to bulk superconductors, revealing the nature of the phase transitions.Comment: 9 pages including 7 figures, to appear in Phys. Rev.

    Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC

    Full text link
    We discuss the relevance of higher order moments of net baryon number fluctuations for the analysis of freeze-out and critical conditions in heavy ion collisions at LHC and RHIC. Using properties of O(4) scaling functions, we discuss the generic structure of these higher moments at vanishing baryon chemical potential and apply chiral model calculations to explore their properties at non-zero baryon chemical potential. We show that the ratios of the sixth to second and eighth to second order moments of the net baryon number fluctuations change rapidly in the transition region of the QCD phase diagram. Already at vanishing baryon chemical potential they deviate considerably from the predictions of the hadron resonance gas model which reproduce the second to fourth order moments of the net proton number fluctuations at RHIC. We point out that the sixth order moments of baryon number and electric charge fluctuations remain negative at the chiral transition temperature. Thus, they offer the possibility to probe the proximity of the thermal freeze-out to the crossover line.Comment: 24 pages, 12 EPS files, revised version, to appear in EPJ

    Spatiotemporal Stochastic Resonance in Fully Frustrated Josephson Ladders

    Full text link
    We consider a Josephson-junction ladder in an external magnetic field with half flux quantum per plaquette. When driven by external currents, periodic in time and staggered in space, such a fully frustrated system is found to display spatiotemporal stochastic resonance under the influence of thermal noise. Such resonance behavior is investigated both numerically and analytically, which reveals significant effects of anisotropy and yields rich physics.Comment: 8 pages in two columns, 8 figures, to appear in Phys. Rev.

    Tracking Performance of the Scintillating Fiber Detector in the K2K Experiment

    Full text link
    The K2K long-baseline neutrino oscillation experiment uses a Scintillating Fiber Detector (SciFi) to reconstruct charged particles produced in neutrino interactions in the near detector. We describe the track reconstruction algorithm and the performance of the SciFi after three years of operation.Comment: 24pages,18 figures, and 1 table. Preprint submitted to NI

    Measurement of single pi0 production in neutral current neutrino interactions with water by a 1.3 GeV wide band muon neutrino beam

    Full text link
    Neutral current single pi0 production induced by neutrinos with a mean energy of 1.3 GeV is measured at a 1000 ton water Cherenkov detector as a near detector of the K2K long baseline neutrino experiment. The cross section for this process relative to the total charged current cross section is measured to be 0.064 +- 0.001 (stat.) +- 0.007 (sys.). The momentum distribution of produced pi0s is measured and is found to be in good agreement with an expectation from the present knowledge of the neutrino cross sections.Comment: 6 pages, 4 figures, Submitted to Phys. Lett.

    The COSINE-100 liquid scintillator veto system

    No full text
    This paper describes the liquid scintillator veto system for the COSINE-100 dark matter experiment and its performance. The COSINE-100 detector consists of eight NaI(Tl) crystals immersed in 2200 L of linear alkylbenzene-based liquid scintillator. The liquid scintillator tags between 65 and 75% of the internal 40K background in the 2–6 keV energy region. We also describe the background model for the liquid scintillator, which is primarily used to assess its energy calibration and threshold

    Measurement of the cosmic muon annual and diurnal flux variation with the COSINE-100 detector

    Get PDF
    We report measurements of annual and diurnal modulations of the cosmic-ray muon rate in the Yangyang underground laboratory (Y2L) using 952 days of COSINE-100 data acquired between September 2016 and July 2019. A correlation of the muon rate with the atmospheric temperature is observed and its amplitude on the muon rate is determined. The effective atmospheric temperature and muon rate variations are positively correlated with a measured effective temperature coefficient of αT = 0.80 ± 0.11. This result is consistent with a model of meson production in the atmosphere. We also searched for a diurnal modulation in the underground muon rate by comparing one-hour intervals. No significant diurnal modulation of the muon rate was observed
    corecore