1,062 research outputs found

    Mitochondrial genomics and Northwestern Atlantic population genetics of marine annelids

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2005The overarching goal of this thesis was to investigate marine benthic invertebrate phylogenetics and population genetics, focused on the phylum Annelida. Recent expansions of molecular methods and the increasing diversity of available markers have allowed more complex and fine-scale questions to be asked at a variety of taxonomic levels. At the phylogenetic level, whole mitochondrial genome sequencing of two polychaetes (the deep-sea tubeworm Riftia pachyptila and the intertidal bamboo worm Clymenella torquata) supports the placement of leeches and oligochaetes within the polychaete radiation, in keeping with molecular evidence and morphological reinvestigations. This re-interpretation, first proposed by others, synonomizes "Annelida" and "Polychaeta", and lends further support to the inclusion of echiurids, siboglinids (previously called vestimentiferans) within annelids, and sipunculans as close allies. The complete mt-genome of C. torquata was then rapidly screened to obtain markers useful in short timescale population genetics. Two quickly evolving mitochondrial markers were sequenced from ten populations of C. torquata from the Bay of Fundy to New Jersey to investigate previous hypotheses that the Cape Cod, MA peninsula is a barrier to gene flow in the northwest Atlantic. A barrier to gene flow was found, but displaced south of Cape Cod, between Rhode Island and Long Island, NY. Imposed upon this pattern was a gradient in genetic diversity presumably due to previous glaciation, with northern populations exhibiting greatly reduced diversity relative to southern sites. These trends in C. torquata, combined with other recent short time scale population genetic research, highlight the lack of population genetics models relevant to marine benthic invertebrates. To this end, I constructed a model including a typical benthic invertebrate life cycle, and described the patterns of genetic differentiation at the juvenile and adult stages. Model analysis indicates that selection operating at the postsettlement stage may be extremely important in structuring genetic differentiation between populations and life stages. Further, it demonstrates how combined genetic analysis of sub-adult and adult samples can provide more information about population dynamics than either could alone.Financial support was provided by an Academic Programs Office fellowship, a CICOR fellowship and research grant, and a National Science Foundation research grant

    Mitochondrial genomes of Clymenella torquata (Maldanidae) and Riftia pachyptila (Siboglinidae) : evidence for conserved gene order in Annelida

    Get PDF
    Author Posting. © The Authors, 2004. This is the author's version of the work. It is posted here by permission of Society for Molecular Biology and Evolution for personal use, not for redistribution. The definitive version was published in Molecular Biology and Evolution 22 (2005): 210-222, doi:10.1093/molbev/msi008.Mitochondrial genomes are useful tools for inferring evolutionary history. However, many taxa are poorly represented by available data. Thus, to further understand the phylogenetic potential of complete mitochondrial genome sequence data in Annelida (segmented worms), we examined the complete mitochondrial sequence for Clymenella torquata (Maldanidae) and an estimated 80% of the sequence of Riftia pachyptila (Siboglinidae). These genomes have remarkably similar gene orders to previously published annelid genomes, suggesting that gene order is conserved across annelids. This result is interesting given the high variation seen in the closely related Mollusca and Brachiopoda. Phylogenetic analyses of DNA sequence, amino acid sequence and gene order all support the recent hypothesis that Sipuncula and Annelida are closely related. Our findings suggest that gene order data is of limited utility in annelids but that sequence data holds promise. Additionally, these genomes show AT bias (~66%) and codon usage biases, but have a typical gene complement for bilaterian mitochondrial genomes.Support by CICOR to RJM is gratefully acknowledged. This work was support by the National Science Foundation grants (DEB-0075618 and EAR-0120646) to KMH

    Mitochondrial genomics and northwestern Atlantic population genetics of marine annelids

    Get PDF
    Thesis (Ph. D.)--Joint Program in Biological Oceanography (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2005.Includes bibliographical references.The overarching goal of this thesis was to investigate marine benthic invertebrate phylogenetics and population genetics, focused on the phylum Annelida. Recent expansions of molecular methods and the increasing diversity of available markers have allowed more complex and fine-scale questions to be asked at a variety of taxonomic levels. At the phylogenetic level, whole mitochondrial genome sequencing of two polychaetes (the deep-sea tubeworm Riftia pachyptila and the intertidal bamboo worm Clymenella torquata) supports the placement of leeches and oligochaetes within the polychaete radiation, in keeping with molecular evidence and morphological reinvestigations. This re-interpretation, first proposed by others, synonomizes "Annelida" and "Polychaeta", and lends further support to the inclusion of echiurids, siboglinids (previously called vestimentiferans) within annelids, and sipunculans as close allies. The complete mt-genome of C. torquata was then rapidly screened to obtain markers useful in short timescale population genetics.(cont.) Two quickly evolving mitochondrial markers were sequenced from ten populations of C. torquata from the Bay of Fundy to New Jersey to investigate previous hypotheses that the Cape Cod, MA peninsula is a barrier to gene flow in the northwest Atlantic. A barrier to gene flow was found, but displaced south of Cape Cod, between Rhode Island and Long Island, NY. Imposed upon this pattern was a gradient in genetic diversity presumably due to previous glaciation, with northern populations exhibiting greatly reduced diversity relative to southern sites. These trends in C. torquata, combined with other recent short time scale population genetic research, highlight the lack of population genetics models relevant to marine benthic invertebrates. To this end, I constructed a model including a typical benthic invertebrate life cycle, and described the patterns of genetic differentiation at the juvenile and adult stages. Model analysis indicates that selection operating at the post- settlement stage may be extremely important in structuring genetic differentiation between populations and life stages. Further, it demonstrates how combined genetic analysis of sub-adult and adult samples can provide more information about population dynamics than either could alone.by Robert M. Jennings.Ph.D

    Recent Decisions

    Get PDF

    Suitport Feasibility - Human Pressurized Space Suit Donning Tests with the Marmon Clamp and Pneumatic Flipper Suitport Concepts

    Get PDF
    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. Two second generation suitports were designed and tested. The previously reported second generation Marman Clamp suitport and a newer concept, the Pneumatic Flipper Suitport. These second generation suitports demonstrated human donning and doffing of the Z1 spacesuit with an 8.3 psi pressure differential across the spacesuit. Testing was performed using the JSC B32 Chamber B, a human rated vacuum chamber. The test included human rated suitports, the suitport compatible prototype suit, and chamber modifications. This test brought these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents the results of the testing, including unexpected difficulties with doffing, and engineering solutions implemented to ease the difficulties. A review of suitport functions, including a discussion of the need to doff a pressurized suit in earth gravity, is included. Recommendations for future design and testing are documented

    The effect of outer antenna complexes on the photochemical trapping rate in barley thylakoid Photosystem II

    Get PDF
    AbstractWe have investigated the previous suggestions in the literature that the outer antenna of Photosystem II of barley does not influence the effective photosystem primary photochemical trapping rate. It is shown by steady state fluorescence measurements at the F0 fluorescence level of wild type and the chlorina f2 mutant, using the chlorophyll b fluorescence as a marker, that the outer antenna is thermally equilibrated with the core pigments, at room temperature, under conditions of photochemical trapping. This is in contrast with the conclusions of the earlier studies in which it was suggested that energy was transferred rapidly and irreversibly from the outer antenna to the Photosystem II core. Furthermore, the effective trapping time, determined by single photon counting, time-resolved measurements, was shown to increase from 0.17±0.017 ns in the chlorina Photosystem II core to a value within the range 0.42±0.036–0.47±0.044 ns for the wild-type Photosystem II with the outer antenna system. This 2.5–2.8-fold increase in the effective trapping time is, however, significantly less than that expected for a thermalised system. The data can be explained in terms of the outer antenna increasing the primary charge separation rate by about 50%

    A “Rosetta Stone” for Metazoan Zooplankton: DNA Barcode Analysis of Species Diversity of the Sargasso Sea (Northwest Atlantic Ocean)

    Get PDF
    Species diversity of the metazoan holozooplankton assemblage of the Sargasso Sea, Northwest Atlantic Ocean, was examined through coordinated morphological taxonomic identification of species and DNA sequencing of a ∼650 base-pair region of mitochondrial cytochrome oxidase I (mtCOI) as a DNA barcode (i.e., short sequence for species recognition and discrimination). Zooplankton collections were made from the surface to 5,000 meters during April, 2006 on the R/V R.H. Brown. Samples were examined by a ship-board team of morphological taxonomists; DNA barcoding was carried out in both ship-board and land-based DNA sequencing laboratories. DNA barcodes were determined for a total of 297 individuals of 175 holozooplankton species in four phyla, including: Cnidaria (Hydromedusae, 4 species; Siphonophora, 47); Arthropoda (Amphipoda, 10; Copepoda, 34; Decapoda, 9; Euphausiacea, 10; Mysidacea, 1; Ostracoda, 27); and Mollusca (Cephalopoda, 8; Heteropoda, 6; Pteropoda, 15); and Chaetognatha (4). Thirty species of fish (Teleostei) were also barcoded. For all seven zooplankton groups for which sufficient data were available, Kimura-2-Parameter genetic distances were significantly lower between individuals of the same species (mean=0.0114; S.D. 0.0117) than between individuals of different species within the same group (mean=0.3166; S.D. 0.0378). This difference, known as the barcode gap, ensures that mtCOI sequences are reliable characters for species identification for the oceanic holozooplankton assemblage. In addition, DNA barcodes allow recognition of new or undescribed species, reveal cryptic species within known taxa, and inform phylogeographic and population genetic studies of geographic variation. The growing database of “gold standard” DNA barcodes serves as a Rosetta Stone for marine zooplankton, providing the key for decoding species diversity by linking species names, morphology, and DNA sequence variation. In light of the pivotal position of zooplankton in ocean food webs, their usefulness as rapid responders to environmental change, and the increasing scarcity of taxonomists, the use of DNA barcodes is an important and useful approach for rapid analysis of species diversity and distribution in the pelagic community

    Regularized Maximum Likelihood Image Synthesis and Validation for ALMA Continuum Observations of Protoplanetary Disks

    Get PDF
    Regularized Maximum Likelihood (RML) techniques are a class of image synthesis methods that achieve better angular resolution and image fidelity than traditional methods like CLEAN for sub-mm interferometric observations. To identify best practices for RML imaging, we used the GPU-accelerated open source Python package MPoL, a machine learning-based RML approach, to explore the influence of common RML regularizers (maximum entropy, sparsity, total variation, and total squared variation) on images reconstructed from real and synthetic ALMA continuum observations of protoplanetary disks. We tested two different cross-validation (CV) procedures to characterize their performance and determine optimal prior strengths, and found that CV over a coarse grid of regularization strengths easily identifies a range of models with comparably strong predictive power. To evaluate the performance of RML techniques against a ground truth image, we used MPoL on a synthetic protoplanetary disk dataset and found that RML methods successfully resolve structures at fine spatial scales present in the original simulation. We used ALMA DSHARP observations of the protoplanetary disk around HD 143006 to compare the performance of MPoL and CLEAN, finding that RML imaging improved the spatial resolution of the image by up to a factor of 3 without sacrificing sensitivity. We provide general recommendations for building an RML workflow for image synthesis of ALMA protoplanetary disk observations, including effective use of CV. Using these techniques to improve the imaging resolution of protoplanetary disk observations will enable new science, including the detection of protoplanets embedded in disks.Comment: 27 pages, 12 figures, accepted for publication in PAS

    Integrative systematics and ecology of a new deep-sea family of tanaidacean crustaceans

    Get PDF
    A new family of paratanaoidean Tanaidacea – Paranarthrurellidae fam. nov. – is erected to accommodate two genera without family classification (Paratanaoidea incertae sedis), namely Armatognathia Kudinova-Pasternak, 1987 and Paranarthrurella Lang, 1971. Seven new species of Paranarthrurella and two of Armatognathia are described from material taken in different deep-sea areas of the Atlantic and Pacific oceans. The type species of Paranarthrurella — P. caudata (Kudinova-Pasternak, 1965) — is redescribed based on the paratype. The genus Cheliasetosatanais Larsen and Araújo-Silva, 2014 originally classified within Colletteidae is synonymised with Paranarthrurella, and Arthrura shiinoi Kudinova-Pasternak, 1973 is transferred to Armatognathia. Amended diagnoses of Armatognathia and Paranarthrurella genera are given. Choosing characters for distinguishing and defining both genera was supported by Principal Component Analysis. Designation of the new family is supported by molecular phylogenetic analysis of COI and 18S datasets. The distribution of all species currently included in the new family was visualised and their bathymetric distribution analysed
    corecore