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Abstract

Regularized Maximum Likelihood (RML) techniques are a class of image synthesis methods that achieve better
angular resolution and image fidelity than traditional methods like CLEAN for sub-mm interferometric observations.
To identify best practices for RML imaging, we used the GPU-accelerated open source Python package MPoL, a
machine learning-based RML approach, to explore the influence of common RML regularizers (maximum entropy,
sparsity, total variation, and total squared variation) on images reconstructed from real and synthetic Atacama Large
millimeter/submillimeter Array (ALMA) continuum observations of protoplanetary disks. We tested two different
cross-validation (CV) procedures to characterize their performance and determine optimal prior strengths, and found
that CV over a coarse grid of regularization strengths easily identifies a range of models with comparably strong
predictive power. To evaluate the performance of RML techniques against a ground truth image, we used MPoL on a
synthetic protoplanetary disk data set and found that RML methods successfully resolve structures at fine spatial
scales present in the original simulation. We used ALMA DSHARP observations of the protoplanetary disk around
HD 143006 to compare the performance of MPoL and CLEAN, finding that RML imaging improved the spatial
resolution of the image by up to a factor of 3 without sacrificing sensitivity. We provide general recommendations for
building an RML workflow for image synthesis of ALMA protoplanetary disk observations, including effective use
of CV. Using these techniques to improve the imaging resolution of protoplanetary disk observations will enable new
science, including the detection of protoplanets embedded in disks.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Submillimeter astronomy (1647); Radio
interferometry (1346); Deconvolution (1910); Open source software (1866)

1. Introduction

Sub-mm interferometric observations of protoplanetary disks
provide critical insight into disk properties like temperatures and
densities which can be used to better understand the planet
formation process. Observations of disks have supported theoreti-
cal models of grain growth, planetesimal and planet formation,
and the emergence of disk substructures (e.g., Isella et al. 2010,
2016; Pérez et al. 2012, 2015; ALMA Partnership et al. 2015;
Andrews et al. 2016; Cieza et al. 2016, 2017; Zhang et al. 2016;
Pinte et al. 2018; Tripathi et al. 2018). In recent years,
interferometric observations that achieve high angular resolution
(some down to scales of 35mas (5 au), such as DSHARP; see
Andrews et al. 2018; Huang et al. 2018) have contributed to a
growing catalog of highly resolved protoplanetary disks. Making

further progress requires accurately imaging disks at still finer
spatial scales. As these scales are resolved, our ability to charac-
terize dust and gas disk substructures will improve, including the
ability to detect signatures of forming planets embedded within
their disks (Benisty et al. 2021; Casassus et al. 2021; Bae
et al. 2022).
The Atacama Large Millimeter/submillimeter Array

(ALMA) is capable of observing sources at high angular and
spectral resolution, down to 20 mas angular resolution at an
observing wavelength of 1.3 mm (230 GHz) (Cortes et al. 2022).
Interferometers such as ALMA are composed of a number of
individual antennas, with every pair defining a baseline. Because
of practical limitations in the number and placement of antennas
as well as observation duration, only a finite subset of baseline
lengths are sampled during an observation. As a result,
interferometers incompletely and noisily sample the visibility
function of an astronomical source, given by

 u v I l m i ul vm dl dm, , exp 2 . 1p= - +∬( ) ( ) { ( )} ( )
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Here,  u v,( ) is the visibility function parameterized by spatial
frequencies u and v, and I(l,m) is the sky brightness distribution,
where l sin cosa d= D( ) and m sin d= D( ) for R.A. α and decl.
δ. The visibility function  and the sky brightness distribution I
are related by the Fourier transform, with the primary data
product from the interferometer being a set of k visibility
measurements D at Fourier domain coordinates (uk, vk).

Interferometric images are synthesized from the observed
visibility data—the final image product depends on how the
algorithm treats noisy visibility measurements and what
assumptions are made about the unsampled spatial frequencies.
If all unsampled spatial frequencies are set to zero power, the
inverse Fourier transform of the visibilities under the chosen
weighting scheme delivers the dirty image. The dirty image can
be thought of as a convolution of the true sky brightness
distribution and the instrument point-spread function, or dirty
beam (Högbom 1974). Because beam sidelobes add image
artifacts that are not representative of the true source sky
brightness, dirty images require processing to better reconstruct
the sky brightness. A more detailed overview of the general
imaging process is provided in (Ch. 10,11; Thompson
et al. 2017).

1.1. Image Synthesis with CLEAN

CLEAN is currently one of the most popular and well-
supported imaging methods in radio interferometric software
(McMullin et al. 2007; CASATeam et al. 2022). CLEAN begins
with the dirty image and iteratively “deconvolves” beam
sidelobes while building up a model representation of the sky
brightness (Högbom 1974). The model is built from CLEAN
components, usually Dirac δ-functions or two-dimensional
Gaussian components, which are placed at the location of the
brightest pixel at each iteration. Deconvolution occurs when the
CLEAN component is convolved with the dirty beam and
subtracted from the dirty image. This process repeats until either
a certain number of iterations is reached or the dirty image
reaches some noise threshold. There are two products at the end
of the CLEANing process: the residual image (originally the
dirty image, but now contains only residuals after deconvolu-
tion) and the CLEAN model (composed of CLEAN
components). The CLEAN model is then convolved with the
CLEAN beam (usually a Gaussian fit to the main lobe of the
dirty beam) and added to the residual image to form the final
CLEANed image (Ch. 11.1; Thompson et al. 2017).

Although CLEAN has long been a reliable way to process
images, it has limitations. Standard CLEAN components are
simplistic (e.g., a Gaussian), which may not be suitable for
capturing certain morphologies, such as sharp edges or rings in a
disk. Extensions to CLEAN, such as adaptive- or multi-scale
approaches that use different component sizes, can yield an
image that is a more realistic representation of an extended
source, though it may still be difficult to accurately reconstruct

all features (Bhatnagar & Cornwell 2004; Cornwell 2008).
Regardless of the chosen variant of CLEAN, it is common
practice to convolve the CLEAN model with a final restoring
beam. This convolution makes the CLEANed image more
visually pleasing, but acts as a low-pass filter, spatially
broadening all information (most strongly that at high
resolution) in the CLEANmodel. Convolution with the CLEAN
beam thus imposes a resolution limit on the final image. The
resolution and sensitivity of a CLEAN image also depend on
how the visibilities are weighted; uniform weighting results in
images with high resolution and low sensitivity, while natural
weighting favors sensitivity at the cost of resolution. Robust
weighting allows for an adjustable resolution-sensitivity trade-
off by selecting a robust parameter −2� R� 2, where R=−2
is similar to uniform weighting and R= 2 is similar to natural
weighting (Briggs 1995).
Other drawbacks of CLEAN include the computational

speed; CLEANing even a single pointing image cube can take
several hours, while other image synthesis procedures
developed with more modern computational infrastructure in
mind can often synthesize an image at least an order of
magnitude faster (e.g., Cárcamo et al. 2018). Lastly, CLEAN is a
nonlinear image restoration procedure rather than a true
optimization algorithm; at least in the Common Astronomy
Software Applications (CASA) tclean implementation, there
are many user-specified algorithm parameters that could affect
the outcome of the CLEANing process, e.g., stopping criteria
and masks that limit where CLEAN components may be placed
(McMullin et al. 2007). Many of these parameters do not have a
clear best choice that corresponds with the image qualities
needed or desired for a given science case, nor can they be
determined a priori. Rather, these parameters need to be
determined by experimentation, which can be laborious when
parameters interact strongly with each other.

1.2. Alternative Image Synthesis Methods

Many of the drawbacks encountered with CLEAN can be
partially or completely avoided by using an alternative class of
imaging techniques which incorporate additional information
into the image synthesis routine through the use of regularizers.
These methods have been successful across a diverse array of
methodologies and implementations, including maximum
entropy methods (MEM, e.g., Ponsonby 1973; Ables 1974;
Cornwell & Evans 1985; Narayan &Nityananda 1986; Casassus
et al. 2013), compressed sensing and sparse reconstruction
methods (e.g., Wiaux et al. 2009; Li et al. 2011; Dabbech et al.
2015; Onose et al. 2016), visibility model fitting (e.g., Tazzari
et al. 2018; Jennings et al. 2020), or machine learning-based
methods (e.g., Dabbech et al. 2022; Sanchez-Bermudez et al.
2022; Delli Veneri et al. 2023; Terris et al. 2023).
In general, regularized maximum likelihood (RML) imaging

refers to image synthesis methods that require maximizing the
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likelihood of a set of visibility data, given a set of predicted
model visibility values and regularizers. RML imaging
techniques have applications in optical (e.g., Buscher 1994;
Thiébaut 2008; Claes et al. 2020), infrared (e.g., Baron et al.
2010), and radio interferometry (e.g., Narayan & Nityananda
1986; Event Horizon Telescope Collaboration et al. 2019).
These techniques can include well-known regularizers like
MEM, but numerous other ways to make assumptions about the
source via regularization also exist.

A notable example in sub-mm radio interferometry are the
Event Horizon Telescope images synthesized from observations
of M87. The team successfully used two independently
developed RML pipelines to obtain high-resolution images of
M87 and showed that RML methods can produce higher
resolution images than CLEAN at similar image fidelity
requirements (Chael et al. 2018; Event Horizon Telescope
Collaboration et al. 2019). For ALMA continuum observations
of protoplanetary disks, Cárcamo et al. (2018) and Pérez et al.
(2019) successfully used RML imaging with entropy-based
regularizers on observations of HL Tau and HD 169142
respectively, finding that RML methods can not only achieve
better resolution than the corresponding CASA tclean image,
but also suppress background noise more effectively. In
addition, Yamaguchi et al. (2020) applied RML imaging
techniques with sparsity and total squared variation regularizers
to ALMA observations of the protoplanetary disk around
HD 142527, yielding images with improved fidelity and higher
angular resolution compared to their CLEAN counterparts.

Despite these notable and impressive applications of applying
RML imaging techniques to ALMA observations of proto-
planetary disks thus far, there has not yet been a systematic
exploration to test the imaging outcomes of various regularizers
on ALMA protoplanetary disk observations, nor has there been
an analysis of image validation procedures and regularizer
tuning for these data sets. In this paper we explore the effects of
four different regularizers (entropy, sparsity, total variation, and
total squared variation) on both real and simulated ALMA
continuum observations of protoplanetary disks and examine the
images resulting from different image validation methods. We
describe the data used in this study and how it was prepared for
RML imaging in Section 2. In Section 3 we discuss the theory of
RML imaging, including the mathematical forms of various
regularizers; give a technical overview of the RML imaging
Python package MPoL; and describe image validation
procedures. We discuss the behavior and attributes of different
regularizing terms in Section 4, followed by a more thorough
examination of image validation procedures and a characteriza-
tion of RML image resolution in Section 5. We present our
conclusions in Section 6. Appendix contains recommendations
for developing a successful RML workflow for ALMA
measurement sets of protoplanetary disk observations.

2. Data

Throughout this study, we used three reference ALMA
visibility data sets. The first is a small, mock data set created
from the ALMA logo (containing only ∼1% of the number of
visibilities of a real, high-resolution ALMA data set). Its small
size means that it can be easily stored and processed on servers
with limited computational means. A full accounting of the data
processing steps are available on the mpoldata sets
repository;6 we briefly summarize them here. The logo was
converted to a grayscale image, Fourier transformed, apodized
with a Blackman Harris window function (to remove spatial
frequencies substantially higher than will be sampled by the
target array), and saved as a FITS file. We then used the CASA
task simobserve (CASA version 6.1; McMullin et al. 2007)
with the C43-7 reference ALMA configuration from simobserve
(alma.cycle7.7.cfg), to “observe” the source as it transits
zenith for 1 hr under median atmospheric conditions.
The second data set in this study is a real Band 6 ALMA data

set containing the observations of the protoplanetary disk hosted
by HD 143006, obtained by the DSHARP survey (Andrews et al.
2018) at a resolution of 45mas. We chose this protoplanetary
disk because it is well-studied and has potential for structures at
small spatial scales, including azimuthal asymmetries. The
visibilities were originally calibrated by the DSHARP team
following the standardized CASA procedures described in
Andrews et al. (2018). The full listing of archival observations
can be found in Andrews et al. (2018, Table 3), and the calibrated
visibilities can be downloaded from the DSHARP archive.7 We
performed one additional step of calibration beyond that of the
DSHARP team. We found that the definition of the visibility
weights was not consistent across all of the archival data sets,
most likely because the treatment of statistical weights used to
calibrate the visibilities frequently changed in 4.x versions of
CASA. We found empirical weight scalings for each data set by
creating a tcleanmodel, subtracting it from the visibilities, and
examining the scatter in the visibility residuals compared to the
Gaussian envelope expected from the thermal weights (w= σ−2).
Each spectral window was corrected individually by multiplying
σ by a scale factor for that spectral window, with a minimum
scale factor of 1.46, a maximum of 1.91, and an average of 1.75
over all spectral windows. A walkthrough of this rescaling
process is described as part of the MPoLdocumentation8 and is
documented in the mpoldata setsrepository.9

The third data set is a synthetic ALMA data set we generated
from a protoplanetary disk simulation described in Pinte et al.
(2016). We converted the model image to grayscale and

6 https://github.com/MPoL-dev/mpoldatasets
7 https://almascience.eso.org/almadata/lp/DSHARP/MSfiles/HD143006_
continuum.ms.tgz
8 https://mpol-dev.github.io/visread/tutorials/rescale_AS209_weights.html
9 https://github.com/MPoL-dev/mpoldatasets/tree/main/products/
HD143006-DSHARP-continuum
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apodized the edges using a Hann window function. We scaled
the simulated image to 512× 512 pixels, with each pixel
measuring 0 01 across so that the total angular extent of the
emission was comparable to disks in the DSHARP survey.
Using the Python Imaging Library, we scaled the total flux of the
image to 59 mJy, matching the total flux of HD 143006
(Andrews et al. 2018). We applied the MPoL routine for
synthetic data generation, which uses a non-uniform fast Fourier
transform (NuFFT) to calculate model visibilities at specified
(u, v). We used the same (u, v) sampling of the DSHARP
observations of HD 143006. We then added random Gaussian
noise to the complex visibilities, with the noise amplitude
distribution set by the inverse square-root of the weights. The
purpose of this data set is to compare RML model results with a
realistic reference image which we can use as a “ground truth.”

Before performing any imaging (either creating a dirty image
or an RML image), we take the ungridded visibility data and
average it to grid cells in the visibility domain. We specify the
grid cells by first defining the spatial extent and desired number
of pixels of the image. Then, we define a corresponding Fourier
grid with the same number of grid cells as the image has pixels.
The ungridded visibilities can be averaged using a simple
weighted average, which is equivalent to uniform weighting.
RML images in MPoL always begin with uniformly weighted
visibilities, as only uniform weighting retains the statistical
properties of the data needed for forward modeling.

3. Forward Modeling with RML

The “maximum likelihood” part of RML refers to finding a set
of visibilities that maximizes the likelihood function

D Ip . 2( ∣ ) ( )

The likelihood function expresses the likelihood of measuring a
set of visibility dataD, given a model image I. The model image
can be parameterized in a number of ways. It is possible to
proceed with only a handful of parameters to describe the model,
for example, a parametric model for a protoplanetary disk might
be defined as a set of annular rings, each further specified by
their radius and intensity (e.g., Zhang et al. 2016; Guzmán et al.
2018). However, we may not know enough about the source to
make such model choices; in this case, a non-parametric
approach can offer more flexibility during the imaging process.

Consider an image with N×N pixels. Each pixel has some
intensity Ii such that the image is described by a set of pixel
intensities,

I I I I, , , . 3N1 2 2= ¼{ } ( )

In this case, the set of predicted model visibilities V are
deterministically calculated by using the Fourier transform of
the image sampled at the range of baselines corresponding to the

visibility data, such that


V I⟺ . A non-parametric model
introduces a great deal of flexibility into the imaging process,

which can be harnessed to significantly improve image fidelity
compared to a parametric fit (e.g., Jennings et al. 2020).
We calculate the log likelihood for the sake of computational

efficiency. Assuming that the model parameterization (e.g.,
number of pixels)will remain fixed, and the noise is uncorrelated
across baselines and follows a normal distribution with standard
deviation σ, the natural logarithm of the likelihood function is

D I
I

p N
D V

ln ln 2
1

2
. 4

i

N
i i

i
D

2D

åps
s

= - -
-( ∣ ) ( ) ( ) ( )

Here, ND is the number of complex visibilities in the data set, Di

is a measured complex visibility at a (ui, vi) point, and Vi is the
predicted value of the model visibilities for the same (ui, vi)
generated from the model image. Except for the factor of 1/2,
the rightmost term above is simply the χ2 statistic,

D I
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, 5
i

N
i i

i

2
2D
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and the log likelihood can be expressed as

D I D Ip Cln
1

2
. 62c= - +( ∣ ) ( ∣ ) ( )

We can now see that in order to maximize the log likelihood, it is
necessary to minimize χ2(D|I). Rather than maximizing the log
likelihood, however, in computing it is more common to
minimize the negative log likelihood, given by

I D I D IL pln
1

2
. 7nll

2c= - =( ) ( ∣ ) ( ∣ ) ( )

In the machine learning community, it is common to focus on
the optimization of some metric that can be described by a loss
function (e.g., Bishop 2006; Hastie et al. 2009; Murphy 2012;
Deisenroth et al. 2020). A loss function is some function which,
when minimized, yields optimal parameter values; here we
adopt the use of a loss function as the primary quantity to be
minimized. It is well established that well calibrated data has
Gaussian uncertainties, thus, we adopt the negative log
likelihood as the first term in our loss function.
Though the negative log likelihood can function indepen-

dently as a loss function, it provides no direct constraints on the
image, yielding an unregularized fit. In radio interferometry,
minimizing the negative log likelihood of the data alone often
results in an undesirable image. This is due to the incomplete
sampling of the visibility function at certain spatial frequencies;
if the visibility function has significant power in (u, v) space that
is unsampled or only sparsely sampled, a loss function with no
regularization is not particularly useful because there exist many
images with the same minimum loss value. As a result, the
(dirty) image product is unlikely to be the best representation of
the true sky brightness distribution.
Figure 1 shows the (u, v) sampling of the HD 143006 data

set alongside the dirty images made by gridding visibilities with
both uniform and Briggs weighting. We use MPoL to generate
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the dirty images, which implements the same dirty imaging
equations as CASA. Uniform weighting yields constant weights
within a grid cell, and usually results in an image with high
resolution at the cost of sensitivity. Briggs weighting has an
adjustable robust parameter which determines the balance
between resolution and sensitivity, making it a popular choice
for making a visually pleasing dirty image (Briggs 1995).

The visibility function likely has power at some of the
unsampled spatial frequencies. While setting these unsampled
but presumably non-zero visibilities to zero is a conventional
and conservative imaging procedure, the resulting dirty images
contain artifacts such as blotchy emission or a noisy back-
ground. One can mitigate the effects of incomplete visibility
sampling by regularizing the loss function. Regularizers have
different functional forms that can be calculated from the image
itself (I) or from quantities derived from the image (e.g., V). For
instance, additional terms emphasizing smoothness in intensity
between adjacent pixels can be added to the loss function to
directly regularize the image. The inclusion of regularizers can
greatly influence the visibility function at spatial frequencies not
sampled by the interferometer, reducing the number of images
that could correspond to the set of observed visibilities and thus
lessening the inherently ill-conditioned missing data problem
posed by the interferometer. For example, a loss function that
includes regularization could be of the form

I I I IL L L L , 8nll A A B Bl l= + + +¼( ) ( ) ( ) ( ) ( )

with various loss function formulations suiting specific data sets
and science goals. Each λ coefficient allows the strength of each
regularizer to be tuned. Tuning this parameter is important in
order to prevent over-regularizing the model, as a poorly
weighted regularizing term will result in an image that is either

not sufficiently different from the dirty image or an image that
matches the observed data but imposes an overly strong prior. In
a Bayesian framework, these regularizing terms would be akin to
prior probability distributions imposed on various parameters of
the model, as they impose some existing knowledge or
expectation about the source on the model (Sivia &
Skilling 2006).

3.1. Regularizers

Implementing regularizers in the imaging process effectively
allows us to make assumptions about unsampled and noisily
sampled frequencies based on our prior knowledge of the
source, in many cases changing the loss function space to
become convex and have one clear minimum corresponding to a
specific image rather than many minima (and thus many images)
that perfectly fit the sampled data. In practice, one may need to
use a combination of several regularizers to obtain an image that
best represents the true sky brightness.
Regularizers vary in their implementations and their potential

effects on the image. Some regularizers can be imposed by
construction. For example, certain parameterizations of I may
disallow negative surface brightness values. Other regularizers
can be imposed via loss terms, computed directly as a function of
the image pixels themselves or via some additional property
derived from the image (e.g., the power spectrum). These
additional loss terms will require their own strength prefactors
(λi), which can be adjusted to balance the relative impact of each
regularizer. Here we discuss the functional form and motivation
for each regularizer we tested, selected based on their well-
known nature and ability to place sensible constraints on
astrophysical images.

Figure 1. An example of how incomplete (u, v) sampling can impact the appearance of the dirty image. (a) The (u, v) sampling of the HD 143006 data set. Even though
the data set contains many long-baseline visibilities, they are fewer in number than short-baseline visibilities. Gaps and low-sensitivity regions of (u, v) space at a variety
of baselines create artifacts in the dirty images because the power at these unsampled spatial frequencies is assumed to be zero. (b) The dirty image with uniform
weighting, which favors resolution over sensitivity. (c) The dirty image with Briggs weighting with a robust parameter of 0.0, which creates more balance between
resolution and sensitivity but still requires a tradeoff. Both dirty images were made with the MPoL DirtyImager module, which implements the dirty images as
specified in Briggs (1995).

5

Publications of the Astronomical Society of the Pacific, 135:064503 (24pp), 2023 June Zawadzki et al.



3.1.1. Image Positivity

The true surface brightness distribution of any astrophysical
source will be strictly greater than or equal to zero intensity. This
constraint is frequently violated by CLEAN-based imaging
procedures, with many synthesized images containing negative
pixels in noisy background regions. The physical constraint on
image positivity can be naturally incorporated into an RML
imaging framework via construction of the image parameteriza-
tion I.

Rather than directly parameterizing I using the set of pixel
values I I I, , , N1 2 2¼{ }, instead, we parameterize the pixel values
using variables Z Z Z, , N1 2 2¼{ } which are then mapped Zi→ Ii
using a function with a strictly positive range. We chose the
Softplus function where Ii is defined by

I f Z Zlog 1 exp . 9i i iSoftplus= = +( ) ( ( )) ( )

The Softplus function maps negative input values to small but
positive non-zero output while leaving positive input values
largely unchanged. I Zexpi i= ( ) is another potential mapping
function, however, we found the Softplus function hastened
model optimization.

3.1.2. Maximum Entropy

Maximum entropy is one of the best-established regularizers
for radio interferometric imaging, and has been shown to deliver
images with better spatial resolution than the CLEAN algorithm
(Cornwell & Evans 1985; Narayan & Nityananda 1986).
Maximum entropy regularization aims to find an image that
(1) is consistent with all testable information (here, the
visibilities sampled by the interferometer) and (2) is maximally
non-committal to untestable parameter space (Ables 1974; Sivia
& Skilling 2006).

Several different functional forms of the maximum entropy
regularizers have historically been used, usually similar to either

Ilog or I Ilog- (where the base of the logarithm could be any
value, including e). The latter is similar in form to statistical
mechanics equations of entropy, but repurposed for information
entropy (Shannon 1948). We follow the definition in Event
Horizon Telescope Collaboration et al. (2019) and define
maximum entropy loss as

L I
I

p

1
ln , 10

i
i

i

i
ent åz= ( )

where ζ is a normalization factor and pi is a reference pixel value
against which other pixels are compared. In this work we used
ζ=∑iIi The reference pixel values could be as simple as a
“blank” image of uniform intensity (e.g., Cárcamo et al. 2018),
or they could take additional knowledge about the source into
account. For example, Event Horizon Telescope Collaboration
et al. (2019) used circular Gaussian images for the sets of pi.

Maximum entropy regularization inherently promotes image
positivity because of the logarithm built into the functional

form of the regularizer; only positive non-zero values Ii
result in a real and defined Iln i (Högbom 1979; Narayan &
Nityananda 1986). In addition, maximum entropy generally
encourages uniform intensities in the image and in the
errors, making it a useful regularizer for identifying the
presence of features in the image (Gull & Daniell 1978;
Högbom 1979).
Maximum entropy regularization also introduces the potential

to achieve some degree of superresolution in the RML image.
Superresolution refers to an image that has achieved marked
improvement in quality compared to another resolution
standard, such as a Gaussian fit to the main lobe of the dirty
beam (which is usually but not necessarily the CLEAN beam).
The potential for superresolution exists in maximum entropy
regularization because the features of the chosen entropy
function (e.g., concavity, change in slope) result in an image
with sharpened peaks and flattened baseline oscillations
(Narayan & Nityananda 1986). Sharper peaks correspond to
resolving features at finer spatial scales, yielding a superresolved
image. Flatter baseline oscillations dampen the blotchy imaging
artifacts that stem from incomplete sampling of spatial
frequencies, such as those seen in Figure 1.

3.1.3. Sparsity

Sparsity regularization uses the L1 norm to promote an image
that is a sparse collection of non-zero pixels. Derived from the
least absolute shrinkage and selection operator (lasso, see
Tibshirani 1996), sparsity is a pixel-based regularizer that has
successfully been applied to radio interferometric imaging to
achieve high-resolution images around black holes and
protoplanetary disks (e.g., Honma et al. 2014; Akiyama et al.
2017a; Kuramochi et al. 2018; Event Horizon Telescope
Collaboration et al. 2019; Yamaguchi et al. 2020).
We formulate the sparsity loss as

L I . 11
i

isparse å= ∣ ∣ ( )

Sparsity regularization reduces the amplitudes of unneeded
pixels (i.e., promoting an image that is a sparse collection of non-
zero pixels), making it a useful regularizer when the true sky
brightness distribution of a source is likely to be sparse.
The sparsity regularizer does not use any information on the

contiguity of blank regions, therefore including a sparsity term
will not necessarily favor adjacent bright pixels that would often
be expected in a resolved source. However, even if the source is
unlikely to be sparse in the image domain (e.g., extended sources
like galaxies), sparse regularization has previously been shown
to successfully reconstruct these images if the regularization is
applied in some other domain like wavelet coefficients (Li et al.
2011; Carrillo et al. 2012, 2014).
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3.1.4. Total Variation

Total variation (TV) regularization applies the L1 norm to the
gradient image, that is, the changes in adjacent pixel intensities
in the image. As a result, TV regularization promotes images
with sharp edges at areas with significant changes in intensity
and relatively smooth areas in-between, exhibiting sparsity in
the gradient image. In other words, the TV regularizer is an
edge-preserving noise filter. TV regularization has been used
with success on its own and in combination with other
regularizers for astronomical interferometric imaging (e.g.,
Wiaux et al. 2010; Akiyama et al. 2017a, 2017b).

Following Rudin et al. (1992), we define the TV loss as

L I I I I . 12
l m

l m l m l m l mTV
,
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2
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The image has dimensions where l corresponds to R.A. and m
corresponds to decl. The ò term is an optional softening
parameter which determines how pixel-to-pixel variations
within the image slice will be penalized. If adjacent pixels vary
more than ò the total loss will greatly increase, so TV
regularization favors minimal variation between adjacent pixels.

3.1.5. Total Squared Variation

The total squared variation (TSV) regularizer is a variant of
the TV regularizer, still summing the brightness differences
between adjacent pixels. However, by not taking the square root
of the differences, the TSV prior results in images with smoother
edges (Kuramochi et al. 2018). The TSV regularizer,

L I I I I , 13
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is functionally similar to the TV prior, except the expression
inside of the summation has been squared and we no longer
include a softening parameter.

3.2. Minimizing the Loss Function

Minimizing the loss function maximizes the likelihood
function, giving a “best fit” image that can change based on
what kind of regularization is implemented. There are a variety
of optimization methods that can be used for this minimization
problem, such as those that require computing first- or second-
order derivatives (e.g., gradient descent algorithms, Newton’s
method) or those that attempt to minimize a function without
computing gradients. We use gradient descent methods, which
are iterative processes with several components. First, the
gradient of the loss function is computed with respect to model
parameters,
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Here, the set of model parameters is equivalent to the set of pixel
intensities. In order to begin optimization, it is necessary to

select an initial set of pixel intensities to be evaluated against the
loss function for the first iteration. The simplest starting point is a
constant value image. However, a faster alternative is to
initialize the model with some approximation of the true sky
brightness. For most ALMA data sets, the dirty image itself is
already a decent approximation of the sky brightness
distribution, enabling the optimization process to converge in
fewer iterations than if the initial state of the parameters had been
uniform (or in any other configuration that is unlikely to
represent the true sky brightness, as shown in the last two
columns of Figure 2). If the loss function is convex (i.e., has only
a single global minimum), the model will converge to the same
result regardless of the initial state of the parameters. The loss
surface is convex for the regularizing terms presented here (e.g.,
see Akiyama et al. 2017a; Chael et al. 2018; Yamaguchi et al.
2020), so a poor choice of initial pixel intensities comes only at
the cost of requiring more iterations to converge on a minimum
loss value.
Figure 2 shows how different sets of initial pixel intensities

impact the speed of convergence while regularizing a sky
brightness projection of the ALMA logo with added noise
(described in Section 2). We apply entropy, sparsity, and total
squared variation regularizers to the loss function. The dirty
image converges first, the blank image second, and the custom
image last. We use a custom image of a dog, intentionally
selecting a set of pixel intensities with no similarity to the true
image. Though the custom set of initial pixel intensities takes
significantly longer to converge, it ultimately does converge on
the same result as the initial dirty and uniform images, showing
that the final result is not sensitive to the initial state of the model.
Figure 2 also shows how the model image is updated during
optimization: after each iteration, the gradient of the image is
added to the model parameters, creating a new model image.
This process repeats until the loss function converges on a
minimum, and the gradient is zero or approximately zero.
One important consideration with the gradient descent

method is step size, also called the learning rate. Steps that are
too large could overshoot the minimum, causing the algorithm to
diverge. The smaller the step size, the more iterations will be
required for the loss function to converge on a final value,
meaning that steps that are too small can quickly become too
computationally expensive to reach the minimum (Ch. 7.1,
Deisenroth et al. 2020; Ch. 8.4, Murphy 2022). It is essential to
check that the optimization algorithm has converged; an image
that has not been fully optimized can be misleading because it is
not actually the maximum likelihood solution. For example, in
Figure 2 all of the model images at 50 and 150 iterations look
quite similar. However, the magnitude of the gradient image
(defined as the gradient value of each pixel added in quadrature)
is reduced by several orders of magnitude at 150 iterations. We
can also see that the loss function has not yet been minimized at
50 iterations, especially when the model was initialized with a
blank or custom image. Though it may be tempting to run fewer
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Figure 2. Visualizing the regularization process using gradient descent optimization to minimize the loss function for different initial pixel values. A combination of
entropy (λ = 0.5), sparsity (λ = 5 × 10−6), and total squared variation (λ = 10−4) regularizing terms were used on a mock data set made from the ALMA logo with
added noise. Each row shows the state of the model and gradient image at a different number of iterations during optimization. The leftmost columns show the sky
brightness and gradient images of a model initialized with the dirty image, the middle columns show the same for a model initialized with a blank image, and the rightmost
columns show the same for a model initialized with a custom image (in this case, an image of a dog). From left to right, this can be read as the best to worst guess for the
true sky brightness distribution. In each gradient image, positive (negative) values are shown in red (blue), and∇denotes the magnitude of the gradient vector (i.e., the
gradient value of each pixel added in quadrature). All sky brightness and gradient images are plotted on the same color scale. A good set of initial pixel values like the dirty
image quickly converges to the final image, while a poor guess is more computationally expensive but achieves the same result.
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iterations in the interest of computational speed, it is essential to
use enough iterations so that the loss function fully converges on
a solution.

3.3. Cross-validation

Regularizers can be tuned by trial and error, testing new λ

values until a seemingly reasonable value is found. This method
has historically been used with success (e.g., Casassus et al.
2006), however, modern computational resources enable a more
systematic way of determining λ prefactor values and optimally
tuning regularizers. One way to determine whether the
regularization (whether it be the strength of the λ prefactors or
the functional form of the regularizer itself) is appropriately
tuned is by using cross-validation (CV). CV aims to find optimal
parameter values by determining how consistently the model
performs given variations in the data set, working on the
concepts of training data and testing data (Ch. 7.10, Hastie et al.
2009; Ch. 8, Deisenroth et al. 2020).

Training data is used to find the model which minimizes the
specified loss function (including regularizers) and yields the
best-fit image. Testing data is used for comparison against the
model optimized with the training data. If some range of spatial
frequencies is not covered by the training data, but is covered by
the testing data, then comparing the trained model to the testing
data effectively measures the predictive power of the model with
respect to that range of spatial frequencies. In other words,
testing data allows us to see how well the model predicts
new data.

In principle, one would like to have a large enough pool of
data such that partitioning it into a training set and a testing set
would not compromise the utility of either subset. When dealing
with costly observational data, however, using enough data to
train the model typically leaves only a small amount for testing,
resulting in a noisy estimate of the predictive performance of the
model (Ch. 1.3, Bishop 2006). CV partially circumvents this
limitation by partitioning all the measured visibility data D into
subsets such that Di({u, v})⊂D, fitting the model on one or
more subsets, and testing the model on the remaining subsets.
One popular method is K-fold CV, which performs this process
in multiple rounds and rotates which subsets are used for testing
in each round (e.g., Akiyama et al. 2017a, 2017b; Yamaguchi
et al. 2020). In this case, data are partitioned into K subsets.
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After partitioning, K− 1 subsets are combined to form the
training data Dtrain and the remaining subset Dtest is used for
testing. Using only Dtrain, a model image Itrain is generated. The
full visibility function Vtrain is obtained from Itrain using the fast
Fourier transform. Finally, Vtrain and the withheld test set Dtest

are compared within the same (u, v) space originally sampled by
Dtest. Applying Equation (6), we obtain

D I D Ip exp
1

2
, 16test train

2
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which indicates that a smaller χ2 value corresponds to a better
match between the trained visibilities and the testing data. In
other words, the lower the χ2 value, the higher the probability of
Vtrain accurately modeling visibilities not included in the original
data set.
This process is repeated K times such that each subset

functions as the testing data exactly once. We obtain a final CV
score by summing the χ2 values calculated for each of the K CV
rounds,

D ICV , 17
k

K

k
2
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where Dk is the test data set, and Itrain is the model image that
minimizes the loss function for the training data D−Dk. A low
CV score indicates that the model (consisting of the choices of
image parameterization, regularizers, and regularizer strengths),
when trained on the training data, does a good job at predicting
the withheld training data. If the regularizers and their strengths
are poorly chosen, however, at least two failure modes arise. In
the first, the model may simply fail to fit the training data
adequately. This can happen if the model is over-regularized
(not sufficiently flexible). When this happens, it is not surprising
that the model also fails to predict the withheld test data
accurately. The second failure mode arises when the model fits
the training data accurately but fails to predict the withheld test
data. This can happen if the model is under-regularized. In this
situation, the model would be said to be over-fit.
Visibility data sets acquired by ALMA have many unique

characteristics, such as their number of samples, variable density
of (u, v) sampling, and varying signal-to-noise ratio, when
compared to simpler data sets (e.g., data points in a polynomial
regression). This presents many opportunities and challenges for
how to partition data for K-fold CV. We explored CV using two
methods of partitioning, which we dub “random cell” and
“dartboard.” Random cell partitioning utilizes K subsets that are
composed of randomly selected visibility grid cells. Grid cells
are randomly drawn without replacement so that each grid cell is
only used in a single subset. The one exception is that, for
numerical stability, we ensure that (u, v) cells with the highest
1% of gridded weight values are included in each K subset.
These cells are usually those at the shortest baselines and most
informative about the total flux of the source. Dartboard
partitioning uses polar grid lines to create a new layer of
azimuthal and radial bins, each of which contains many visibility
grid cells. Each of the K subsets consists of randomly drawn
dartboard cells without replacement. Figure 3 shows an example
of dartboard partitioning.
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3.4. The MPoL Package

Million Points of Light (MPoL)10 is an open-source Python
package we have designed as a foundation to enable RML
imaging for a variety of interferometric workflows. MPoL is
built on PyTorch (Paszke et al. 2019), an open-source machine
learning framework that provides a “tensor” array with the
ability to calculate gradients using auto-differentiation. Gradient
calculations with auto-differentiation enable users to easily and
rapidly minimize a loss function with gradient descent methods,
as illustrated in Figure 2.
Even with fast calculation of gradients, minimizing the loss

function for RML images with many pixels can quickly
become computationally expensive on a CPU. Because
computational timescales with image dimensions, parameteriz-
ing an image with more pixels results in a slower RML imaging
process. This can be further exacerbated for data cubes with
both a large number of pixels and many channels. Although
RML imaging techniques, in particular maximum entropy,
have existed for decades, the required computational resources
placed substantial limitations on the sizes of the synthesized
images. For this reason, MPoL takes advantage of the power of
GPUs, which can greatly reduce computation time compared to
CPUs. For a single 1024× 1024 pixel RML image with MPoL,
computation time tends to be a few minutes on a CPU and a few
seconds on a GPU, though this will vary depending on the
number of iterations needed to reach convergence. This is
relatively fast either way, especially compared to CLEAN
methods which may take days for high resolution ALMA
observations that require many CLEAN components to
synthesize the image.

4. Results

We explored the effects of entropy, sparsity, TV, and TSV
regularizers on images produced from both the simulated
protoplanetary disk data set and the real HD 143006 data set
described in Section 2. Figure 4 shows the result of each of these
regularizers at different strengths (set with the λ prefactor on
each term). The images shown were generated using an
arbitrarily chosen range of λ values in order to show the breadth
of images possible with different regularizer tunings. Figure 5
shows the residuals from each optimized image for each of the
panels shown in Figure 4 imaged from the residual visibilities
using the DirtyImagerwith Briggs weighting (robust= 0.0).
While we found the most success using multiple regularizers in
combination with each other, here we qualitatively describe the
effect of each regularizer on protoplanetary disk images in
isolation. Figures 4 and 5 show variation across images made
from the HD 143006 data set; we verified that the simulated disk
data set exhibits similar behavior.

Figure 3. Visualizing the data partitioning for K-fold CV (K = 5) of the
HD 143006 data set using the dartboard scheme with 12 log-linearly spaced
radial bins and 8 equal-sized wedges from 0 to π. The left column shows 4
subsets combined and used to fit the model, while the right column shows the
withheld subset of data used for validating the model. Each of the K rows shows
a different subset of data used as the testing data.

10 https://mpol-dev.github.io/MPoL/
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Figure 4. The effect of regularizers on images of HD 143006, applied one at a time. From left to right, each column shows entropy, sparsity, total variation, and total
squared variation regularizers at varying strengths. The top row uses the least regularization (i.e., a small λ prefactor on the regularizing term) and the bottom row shows
extremely high regularization. A range of λ values were selected in order to show the full range of possible images; near optimal λ values can be found using CVmethods.
All images are displayed on the same color scale.
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Figure 5. Residuals for the images presented in Figure 4. Regularizer strengths are lowest in the top row, and highest in the bottom row. Images generated with strong
regularizing terms show structure in the residual images, indicating that the model is underfitting the data. All images use Briggs weighting (robust= 0.0). All images are
displayed on the same color scale.
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4.1. Entropy Performance

The first column of Figure 4 shows the effect of different λ
prefactors for maximum entropy regularization of HD 143006
with a positive, uniform set of reference pixels
(I 10 Jy arcsec7 2= - - ). Even at high λ values, maximum
entropy regularization can retain high-resolution features in the
image. However, because maximum entropy regularization
generally promotes uniformity in the image, the image tends to a
model image that appears “faded” at excessive values of λ,
making emission appear fainter across the entire source. The
bottom-left panel of Figure 4 shows an example of such an
image.

The primary indication of over-regularization with maximum
entropy is an image that appears faint or slightly blurred
compared to images made from different entropy λ values,
suppressing bright peaks in the image. Another way to check for
over-regularization is by examining the residual image. In the
bottom-left panel of Figure 5, ringed structure is evident in the
residual image created by maximum entropy regularization with
λ= 8× 10−1. In some cases, these effects may be mitigated by
using a non-uniform set of reference pixels, such as a circular
Gaussian (e.g., Event Horizon Telescope Collaboration et al.
2019) or a uniform ring. This should be done with caution, as
maximum entropy regularization favors similarity with the
reference image, and the reference image may not capture
enough characteristics of the true source. This could have
unintended consequences such as regularizing out small-scale
structures (for example, localized asymmetries) that are present
in the data but not in the set of reference pixels.

4.2. Sparsity Performance

Sparsity regularization promotes mostly blank images, with
only the most impactful pixels having non-zero values. Only a λ
prefactor determines how strongly sparsity should be imposed
during optimization; unlike maximum entropy regularization,
no reference image is needed. Column 2 of Figure 4 shows
images of HD 143006 with 5 different sparsity λ values. A small
λ can effectively suppress noisy background pixels in the image
without changing much, if anything, about the source emission.
Sparsity regularization alone does not introduce any “smooth-
ing” effects that may be desirable for a resolved source; the
image will ultimately be a sparse collection of non-zero pixels,
which can make it difficult or impossible to identify small-scale
structures within the image. For protoplanetary disk continuum
data sets, sparsity regularization is most effectively used in
combination with other regularizers.

Over-regularization with sparsity can have a significant
negative impact on image fidelity, yielding an image that is
not representative of the entire source. Because the sparsity
regularizer encourages mostly blank images, one potential
drawback is the risk that astrophysically real but faint emission
may not appear in the synthesized image. This has the effect of

neglecting more diffuse emission in the synthesized image, as
diffuse emission lacks bright peaks for the sparsity regularizer to
identify. In the case of HD 143006, sparsity regularization with a
high λ value removed some of the more diffuse emission, and in
extreme cases removed some rings entirely. In Figure 4, the
bottom panel of column 2 shows the result of imaging
HD 143006 with sparsity over-regularization. Here, the outer
ring has been regularized away, but the bright azimuthal
asymmetry that normally coincides with the outer ring is still
present, completely misrepresenting the morphology of the
source.
Over-regularization is very evident in the residual image

(column 2, Figure 5). Because only the most prominent features
remain in the model image, any diffuse or generally lower-
intensity emission will instead be apparent in the residuals. In the
model image of a resolved source, things to look out for that may
indicate sparsity over-regularization include features that appear
“incomplete” such as having partial rings, an unexpected bright
standalone feature, or unexpectedly sharp changes in intensity.

4.3. Total Variation Performance

TV regularization promotes sharp edges between areas of
different intensities, with smoothness in areas of similar
intensity. Column 3 of Figure 4 shows the effect of different λ
prefactors for TV regularization of HD 143006. Because TV
promotes similarity between adjacent pixels unless there is a
large change in intensity (i.e., sparsity in the spatial gradient of
the image), TV regularization can result in a model image
composed of many nearly uniform cells, each containing several
pixels. This can create an optical illusion where the image
appears to have larger pixels than the true pixel size (e.g., see the
image in the third column and third row of Figure 4, where
λ= 8× 10−6).
This effect changes as the λ value increases, with model

images being reminiscent of a watercolor painting or a photo that
has been posterized. Because TV regularization does not favor
gradual changes in intensity, instead preferring sharp changes, a
smooth change in source intensity is likely to become a set of
sharply defined layers in the image. In the case of extreme over-
regularization, this can remove most detail from the image,
resulting in an image that appears blotchy or smeared. However,
in a source like HD 143006 which exhibits ringed emission, the
smearing is mostly azimuthal rather than radial, retaining some
large scale ring structure while losing or minimizing finer details
like gaps or azimuthal asymmetries.
For these reasons, TV regularization may be a poor choice if

the source is likely to have small scale features or gradual
changes in intensity, as many astronomical sources do. Though
over-regularization can be evident due to the presence of
structure in residual images (see the bottom panel of column 3,
Figure 5), it may not be evident from inspection of residuals
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alone until well beyond the λ value at which morphological
details are regularized out of the image.

4.4. Total Squared Variation Performance

Like TV regularization, TSV regularization promotes sharp
edges between areas of different intensities. However, the TSV
regularizer is less rigid with this condition, allowing for larger
differences between adjacent pixels—while TV regularization
applies sparsity (or the L1 norm) to the gradient of the image,
TSV regularization applies the L2 norm to the gradient of the
image. This makes TSV a strong performer for sources with
clearly defined but not perfectly sharp features, such as ringed
emission. The rightmost column of Figure 4 shows images of
HD 143006 with 5 different TSV λ values. Well-tuned TSV
regularization performs comparably to maximum entropy
regularization, retaining high-resolution features in the model
image.

The primary sign of over-regularization with TSV is a blurred
image. If the TSV-regularized image appears to have no sharp
features at all, as if it had been put through a low-pass filter, it is
likely over-regularized. This is also evident in the residual
images (rightmost column, Figure 5), where sharp structures will
appear if they have been regularized out of the sky brightness
image.

4.5. Hyperparameter Tuning

Figure 6 shows how random variation can impact which
hyperparameters minimize the CV score. We demonstrate this
with the simple case of tuning a single hyperparameter: imaging
the HD 143006 data set with only TSV regularization and using
dartboard visibility partitioning (described in Section 3.3). The
CV score with respect to λTSV is loosely U-shaped, and there are
a range of λTSV values that produce comparably low CV scores.
We show three images over nearly a full order of magnitude in
λTSV that correspond to CV scores within 10% of the minimum
CV score. Within a single CV setup, each K-fold also exhibits
variation. In particular, the K-fold which lacks the shortest
baseline visibilites in the training data tends to dominate the total
CV score at low λTSV. If the random seed for visibility
partitioning is changed, this behavior repeats with small
variations; the minimum CV score occurs at λTSV= 10−4

instead of λTSV= 3× 10−4. Thus, rather than requiring strict
minimization of the CV score, there commonly exists a range of
hyperparameters that result in similar images. This makes tuning
with CVmethods easier and faster, as one can conduct CV over a
fairly coarse grid of hyperparameter values.

We explored the quality of images produced using CV
applied to real ALMA data of the disk around HD 143006, but
these exercises lacked a comparison around a “ground truth”
source image. To further evaluate the performance of these two
CV schemes, we conducted additional CV analyses using the
simulated data set and its corresponding source image. We find

that both random cell and dartboard partitioning as presented in
Section 3.3 are viable options for hyperparameter tuning, though
random cell may minimize differences between the RML image
and ground truth slightly better. A comparison of hyperpara-
meter tuning using both dartboard and random cell visibility
partitioning for the simulated disk data set is shown in Figure 7.
The left panel shows the CV scores for various λent and λTSV for
dartboard partitioning, while the right panel shows the same for
random cell partitioning. In each panel, the green box highlights
the minimum CV score for that particular partitioning scheme,
while the yellow boxes show the hyperparameter values selected
by tuning by hand (adjusting the hyperparameter values
manually until a seemingly reasonable image is achieved).
We find the minimum residual image for each combination of

hyperparameters by summing the absolute value of the
difference,
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where Ii,RML is an RML image pixel and Ii,true is some
corresponding reference image pixel for an image with N2 total
pixels. The blue boxes in Figure 7 show the hyperparameter
setting that minimized the difference between the RML
and ground truth image (the “minimum residual” image). We
also compute the normalized root mean squared error
(NRMSE),
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The hyperparameter setting which minimized the NRMSE
between the RML and ground truth image is shown boxed in
white.
Each of these tuning methods (random cell and dartboard

CV, along with tuning by eye and minimizing quantities
derived from the ground truth) yielded similar results. In
Figure 8, we compare the true simulated disk image (top left)
with five RML images that correspond to a different
hyperparameter tuning method highlighted in Figure 7. The
bottom left panel shows an image tuned by trial and error,
adjusting the hyperparameter values by hand until a seemingly
reasonable image is achieved. The top center and bottom center
panels show RML images tuned by CV using random cell and
dartboard visibility partitioning, respectively. Lastly, the top
right panel shows the RML images that minimizes the NRMSE,
and the bottom right panel shows the minimum residual RML
image.
Both the minimum NRMSE and minimum residual images

are obtained by comparing the RML model to the ground truth
image in different ways. If we assume that the minimum
NRMSE image defines the optimal solution, then random cell
CV or simply hand tuning hyperparameters performed best. If
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we assume that the minimum residual image defines the optimal
solution, then hand tuning hyperparameters performed best,
closely followed by random cell CV. Despite small variations in
the hyperparameter settings, the minimum NRMSE and
minimum residual images appear qualitatively similar, though
the minimum residual image exhibits a greater degree of
smoothing. Conversely, CV with dartboard partitioning resulted
in a synthesized image which looks noisier and less smooth than
the others. In all cases, however, we found that the RML images

successfully recovered the most prominent rings and gaps in the
original simulation, but failed to suppress enough noise to
recover features at the smallest spatial scales or with low contrast
flux variations.
Using the simulated data set created an opportunity to

visualize the performance of the RML model in the visibility
domain relative to the “true” visibility function. Figure 9 shows
how the visibility amplitudes of the simulated protoplanetary
disk image (computed by taking the FFT of the ground truth

Figure 6. An example of hyperparameter tuning with CV scores, using dartboard train/test set partitioning with 30 log-linearly spaced radial bins and 10 equally spaced
azimuthal bins from 0 to π. CV scores are computed by taking the average χ2 difference in the model visibilities. Panels a, b, and c show images made with different
values of λTSV and their corresponding CV scores. Panel b shows the image corresponding to the minimum CV score, while panels a and c show images with CV scores
within 10% of the minimum. Panel d shows how the CV score varies with λTSV. The gray lines show the χ2 contribution from each of the 10 K-folds used during CV. The
solid black line shows the sum of these χ2 contributions, which yields the total CV score. The minimum occurs at λTSV = 3 × 10−4. The blue dashed line shows the total
CV score for a different random seed used when partitioning data for CV, all else held constant. Here, the minimum occurs at λTSV = 10−4. Because the CV score with
respect to λTSV generally makes an asymmetrical U shape, there are a range of λTSV values that produce comparably low CV scores. All three images presented here fall
into this range which spans nearly a full order of magnitude in λTSV. The K-fold denoted by the dashed–dotted line represents the K-fold in which the training data did not
include the centermost visibilites (but the testing data did), which dominates the total CV score at low λTSV.
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image) compare to the visibility amplitudes of the RML model
tuned with random cell CV. The right panel shows the
differences between the visibility amplitudes of the RML model
and the true image, most of which are on the same scale as the
noise of a typical non-zero gridded visibility cell (cell size
=1623 kλ2; mean σ= 2.9× 10−3 Jy, for baselines 3000 kλ<
q< 5000 kλ). The visibility amplitudes of the RML model only
deviate slightly from the visibility amplitudes computed from
the ground truth image (∼mJy fluctuations or smaller),
demonstrating that RML imaging techniques achieve model
visibilities close to corresponding true values.

Even though the visibility amplitudes are generally similar,
the baseline distribution of the original data (shown in the left
panel of Figure 1) leaves a distinct imprint on the RML model
visibilities; the RML model visibility amplitudes are greatest at
(u, v) included in the data set. The model appears to interpolate
well at (u, v) that is already thoroughly sampled by the original
data (i.e., q< 4000), but only partially extrapolates to long
baselines. At long baselines, the RML model visibilities have
power at (u, v) not represented in the original data, but these
regions of the RML model have less power than the true
visibility function by at least an order of magnitude. There is
also distinct ringed structure in the true visibility function that
is largely absent in the RML model visibilities. This structure

arises from small flux variations in the visibility function and is
only visible on a logarithmic color scale; the noise added to the
mock data set may be one impediment preventing the RML
model from reproducing these subtle features.
With any image synthesis method, the optimal image product

will depend on the needs of a particular science case. It follows
that choices about image validation will also vary depending on
which image characteristics are being prioritized (e.g.,
maximizing sensitivity or achieving the finest possible
resolution). Regardless of which characteristics are favored,
we find that none of the hyperparameter tuning methods
explored here result in RML images that grossly misrepresent
the morphology of the source. Combining multiple regularizers
is an effective way to achieve a high quality image product, as
each regularizer contributes different qualities to the image (e.g.,
high resolution features from entropy, reduced background
noise from sparsity). We recommend using CV methods as a
technique to identify hyperparameter settings that improve
model image fidelity rather than using an absolute minimum CV
score to identify a single “best” choice of regularizers and
hyperparameter values, as trivial variations in image pixel values
appear at hyperparameter settings near the minimum CV score,
and the minimum CV score itself exhibits variation stemming
from randomness in the visibility partitioning.

Figure 7.CV scores at different hyperparameter setting of λent and λTSV for the simulated disk data set using dartboard (left) and random cell (right) visibility partitioning.
CV scores boxed in green (å) are the minimum value found for the specified partitioning method. Scores boxed in yellow (+) correspond to the hyperparameter settings
found by adjusting hyperparameters by trial and error until a visually pleasing image is achieved. Scores boxed in blue (◊) correspond to the hyperparameter settings
which minimized the total pixel difference between the RML model and ground truth, while scores boxed in white (#) correspond to the hyperparameter settings which
minimized the NRMSE between the RML model and ground truth. Note that hyperparameter settings found for tuning by hand, minimizing the pixel difference, and
minimizing the NRMSE are the same in both panels; because they are not CV methods, they do not use any visibility partitioning.
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We distilled the practical wisdom gained from our exploration
of regularizers and image validation to produce an exemplary
image from the HD 143006 data set. We combined entropy,
sparsity, and TSV regularization to generate an image of
HD 143006, shown in Figure 10. Entropy contributed high
resolution features to the image, while sparsity removed
background noise. We found that TSV helps better define ring
structure in the disk, but excluded TV because it degraded the
resolution of the image. We also provide a comparison to the
CLEAN image synthesized by the DSHARP team (Andrews
et al. 2018). To tune the hyperparameters, we used random cell
CV to identify a starting point, then adjusted λTSV by hand to
introduce more smoothing into the model image. We increased
the λTSV from 2.15× 10−4 to 2.15× 10−3, a change comparable
to the range of acceptable hyperparameter values identified in
Figures 6 and 7. We found that RML methods successfully
recover all features that appear in the fiducial CLEAN image of

HD 143006 synthesized by the DSHARP team (Andrews et al.
2018), as well as remove background noise and improve angular
resolution compared to the CLEAN image.

5. Discussion

5.1. Best Practices for Image Validation

Cross-validation (CV) is a tool for determining the settings of
the regularization parameters that yield an image model with the
best predictive power for new data. The use of CV methods on
interferometric data is an active area of research, and there are
many aspects which have not yet been fully explored. First, CV
can be implemented as either an exhaustive or non-exhaustive
method; an exhaustive method will use all possible ways to
partition data, while a non-exhaustive method will use only a
subset of possible partitions. An example of an exhaustive
method is leave-one-out CV (LOOCV), which takes all but one

Figure 8. The simulated protoplanetary disk image (top left) and five RML images generated using different hyperparameter tuning techniques. The bottom left image
was tuned by hand. The top center and bottom center images were tuned by CV using random cell and dartboard visibility partitioning, respectively. The top right image
was tuned by minimizing the NRMSE between the RML and true simulated images, and the bottom right image was tuned by minimizing the difference between the
RML and true simulated images.
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data point as the training set and uses the remaining data to test,
cycling through the entire data set. These methods can be
extremely computationally expensive, especially in the case of
interferometric data containing millions of visibility measure-
ments. In addition, LOOCV performs worse in terms of
parameter selection and evaluation compared to other methods
of CV (Breiman & Spector 1992).

Non-exhaustive CV methods like K-fold CV greatly reduce
the total computational burden, and are thus a more practical CV
method for interferometric data. K-fold CV requires a choice of
K that balances bias and variance in the parameter error
estimates, with a high K yielding a low bias, high variance
estimation and a low K yielding a high bias, low variance
estimation (Hastie et al. 2009). Studies in statistics and
informatics have consistently found K= 10 to provide the best
bias-variance trade-off (e.g., Breiman & Spector 1992; Kohavi
1995; Molinaro et al. 2005). While no studies have specifically
examined the optimal K for K-fold CV of interferometric data,
the standard K= 10 has been used with success for such
applications (Akiyama et al. 2017a, 2017b; Yamaguchi et al.
2020). In this study, we restricted our exploration of CV to
K-fold CV with K= 10.

Aside from the choice of K, one must also decide how to
partition the data set. Random cell partitioning randomly selects
visibility grid cells without replacement for each subset of
testing data.With such a large number of visibility grid cells, it is
likely that each subset will have similar (u, v) coverage.
Therefore, CV with random cell partitioning effectively tests
how well a trained model predicts new data with similar (u, v)
coverage. Random cell partitioning has been used to tune
regularizer hyperparameters in previous studies of RML for

interferometry (e.g., Akiyama et al. 2017a, 2017b; Yamaguchi
et al. 2020). We also explore dartboard partitioning, which
generates testing data from radial and azimuthal bins of gridded
visibility cells (see Figure 3). CV with dartboard partitioning
tests how well the model extrapolates to (u, v) space notably
different than the training data. Dartboard partitioning aims to
simulate the irregular (u, v) sampling common to most ALMA
interferometric observations (e.g., across execution blocks or
array configurations), approximating how the model might fit
with data obtained from a variety of array configurations. As the
number of dartboard bins increases, the dartboard partitioning
scheme begins to test the predictive power of the model in
comparable u− v space (as with random cell partitioning). CV
partitioning schemes for interferometric imaging are an active
area of research, but we find that both random cell and dartboard
methods are helpful in determining the range of performant
hyperparameter values.
Regardless of the choice of K and data partitioning scheme, it

is vital to ensure that the model has fully converged for each
training set. We find that the number of iterations needed to
optimize the model during K-fold CV is often greater than the
number of iterations needed to optimize the model with the full
data set, as training on fewer data points can require more
iterations before the loss function is minimized. This is
especially true for the K-fold that does not contain the visibilities
at the lowest spatial frequencies (i.e., (u, v) close to zero), as the
omission of this data can cause a slow initial decline of the total
loss. We found that for dartboard partitioning, the training set
without the lowest spatial frequency visibilities is usually the
slowest to converge.

Figure 9. A comparison of the true visibility function (left), recovered visibility function using RML (middle) and the residuals (right), shown using the amplitude only.
The true visibility function was computed with the FFT of the ground truth image; the RML visibilities are retrieved directly from the forward model. The visibility
amplitudes are plotted on the same logarithmic color scale. The right panel shows the difference between the visibility amplitudes of the RMLmodel and the true image,
plotted on a symmetrical logarithmic color scale, which switches to a linear scale at absolute values smaller than 2.9 × 10−3 Jy (the mean σ of non-zero gridded visibility
cells with baselines 3000 kλ < q < 5000 kλ, where each gridded cell is 1623 kλ2). The circles show spatial frequencies corresponding to a 24 mas beam, which is the
approximate resolution of the RML image.
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Because the final CV score is the sum of the χ2 for all K-folds,
a K-fold that has not fully converged can result in a spuriously
high CV score. We recommend inspecting each K-fold for
convergence after training, as well as inspecting the final χ2

value for each K-fold. This delayed convergence usually
coincides with the K-fold for which the training set lacks data
at the lowest spatial frequencies (e.g., K-fold 5 in Figure 3), and
commonly occurs when using dartboard visibility partitioning.
If each K-fold does not reach convergence, the final CV score is
invalid and the entire CV process must be repeated with enough
iterations to ensure full convergence.

While CV scores can be used to find optimal regularization
parameters, it is important to take care when comparing CV
scores. First, as mentioned above, any CV score obtained from
training without allowing the loss function to reach a minimum
(i.e., one or more K-folds do not reach convergence) cannot be
used. CV scores may only be compared across the same data set,

model specification, and CV setup. The CV setup includes the
value of K and the choice and implementation of partitioning
scheme.
It is possible to compare CV scores when using different

regularizers, so long as the regularizer has a tuneable prefactor
(e.g., λ values) that can be set to zero. For example, the CV score
for a model with only an entropy regularizer can be
straightfowardly compared to that of a model with only a TV
regularizer, because this is effectively comparing different ways
to tune the λ prefactors, including λentropy= 0 and λTV= 0. In
addition to these edge cases which “turn off” certain regularizers,
CV scores can be compared for any values of λentropy and λTV, as
long as the data set and CV setup remain consistent.

5.2. Determining Image Resolution with RML

Imaging with CLEAN typically involves building up a model
of CLEAN components and then convolving that model with the

Figure 10.Dirty image (left, robust= 0.5), tclean fromAndrews et al. (2018) (center), and RML (right) images of HD 143006. The top row shows the three images on
individual color scales (i.e., each panel is normalized to the minimum and maximum pixel values), while the bottom row shows the three images displayed on the same
color scale. The loss function for the RML image included maximum entropy (λ = 1 × 10−1), sparsity (λ = 5 × 10−4), and TSV (λ = 2.15 × 10−3) terms. In this case,
maximum entropy contributes high resolution features to the image, sparsity removes background noise, and TSV helps better define ring structure in the disk.
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CLEAN beam. A CLEAN component may be as simple as a
Dirac δ-function, which is useful for fields with many point
sources, but may be the suboptimal basis set for representing
spatially resolved sources. Beam convolution effectively
spreads flux from these components over the size of the beam,
making the image more representative of the true source
morphology at the cost of resolution. Because the size of the
CLEAN beam is a known quantity, characterizing the resolution
of a CLEANed image is relatively straightforward.

RML images, on the other hand, are not generated from a set
of individual components and thus do not require beam
convolution in order to obtain a smoother image product. The
most obvious benefit to this is that a strict limit on resolution is
not baked into the imaging workflow. However, the lack of
restoring beam does make characterizing the resolution of an
RML image more ambiguous than characterizing the resolution
of a CLEAN image. Chael et al. (2016) find that restoring beams
can still be useful for RML methods, as false high-frequency
features can sometimes be present in the image. However, we
find that carefully selecting and tuning regularizers is a more
effective way to ensure that erroneous features do not appear, as
a restoring beam that is too large could remove real features in
the image.

The theoretical restoring beam size can be computed given
knowledge of the true source; the beam size that minimizes the
NRMSE is commonly adopted as the primary metric for
evaluating the quality of reconstructed interferometric images
(e.g., Chael et al. 2016; Akiyama et al. 2017a, 2017b;
Kuramochi et al. 2018; Yamaguchi et al. 2020). Notably, Chael
et al. (2016) show that when trying to recover a “true” reference
model input image of a compact source, the NRMSE is
minimized at a considerably smaller beam size with RML
techniques compared to CLEAN. If the ground truth is known

(e.g., when making an RML image from simulated data based
off of a model image, as in our simulated disk data set), then
convolving the RML image with a beam size that minimizes the
NRMSE can maintain the highest degree of superresolution in
the image while removing any potential spurious high-frequency
features.
Figure 11 shows an RML image convolved with a circular

Gaussian restoring beam that minimizes the NRMSE. We use
the simulated disk data set (so that we have a ground truth for
comparison) and the RMLmodel tuned by random cell CV. The
base RML model and the beam convolved RML model look
similar, with the only difference being a small degree of
blurring/smoothing in the convolved image. Because the
NRMSE at a relatively small beam size (FWHM = 24.0 mas),
it is unsurprising that the images do not deviate from each other
significantly. Given that perfect knowledge of the true sky
brightness does not accompany observational data, this
approach will not always be possible. Even though the optimal
restoring beam size cannot always be constrained, image fidelity
is only mildly worsened by selecting a beam size smaller than
the optimal value. As a result, the use of a restoring beam in an
RML imaging workflow can only result in small fidelity gains in
the best case, and can result in significant loss of resolution in the
worst case.
RML methods are known to be capable of generating images

superresolved to 1/4 of the nominal resolution of the
interferometer R bmin maxl= , where bmax is the length of the
longest baseline in the array (e.g., Narayan & Nityananda 1986;
Honma et al. 2014). This is typically treated as an upper
resolution limit for RMLmethods, as the derivation of this factor
assumes that the data have high signal-to-noise and thoroughly
sample the visibility function (Holdaway 1990). In practice,
superresolution factors ranging from roughly 1/3 to 1/2 of the

Figure 11. Convolving an RML image with a beam that minimizes the NRMSE between the RML image and the original simulation. The left panel shows how the
NRMSE changes with beam FWHMvalues. The NRMSE is minimized at a beam FWHMof 24.0 mas. The center panel shows the RML image of the simulated disk data
set (λentropy = 2.15 × 10−1, λTSV = 4.64 × 10−3, λsparse = 2.00 × 10−3). The right panel shows this RML image convolved with a 24.0 mas restoring beam.
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nominal resolution are the most common outcome from RML
imaging methods (e.g., Chael et al. 2016; Akiyama et al. 2017a,
2017b; Cieza et al. 2017; Casassus et al. 2018, 2019, 2021;
Kuramochi et al. 2018).

Figure 12 shows RML images of HD 143006 both without
any restoring beam, and with restoring beams equal to 1/4, 1/3,
1/2, 1, and 3/2 times the synthesized beam size of the DSHARP
continuum tclean image of HD 143006 (11.5, 15.3, 23.0,
46.0, and 69.0 mas, respectively). We used astropy.
convolution to convolve the model with circular Gaussians
directly in the image plane. There are no significant qualitative
differences in the base RML image (top left panel) and the RML
images convolved with beams equal to 1/4 (top center), 1/3 (top
right), and 1/2 (bottom left) the size of the synthesized beam of
the tclean image. In this case, we do not observe spurious
high-frequency features in the base RML image, so convolution

with small restoring beams has little impact on the final image.
We emphasize that while RML methods do not require a
restoring beam, convolving an RML image with a modest
restoring beam (i.e., 1/3-1/2 the nominal resolution of the
observations, consistent with the performance seen in Figures 11
and 12) yields a more conservative final image while still
benefitting from some degree of superresolution.

6. Conclusion

We have developed MPoL, a GPU-accelerated RML imaging
package for image synthesis of complex visibilities from
ALMA. We described the mathematical foundation of RML
imaging methods and several regularizers, and described a
general RML imaging framework with MPoL. We explored how
maximum entropy, sparsity, TV, and TSV regularizers can be

Figure 12. The effect of a restoring beam on an RML image of HD 143006. As in Figure 10, the loss function for the RML image included maximum entropy
(λ = 1 × 10−1), sparsity (λ = 5 × 10−3), and TSV (λ = 2.15 × 10−3) terms. The top left panel shows the RML image with no restoring beam. All other panels show the
same image after being convolved with a circular Gaussian restoring beam, with beam sizes shown in the bottom left corner of each panel. The beam sizes shown are
based off the resolution of the CLEAN image made from the DSHARP data of HD 143006, which has a synthesized beam FWHM of 45 × 46 mas (Andrews et al. 2018;
Pérez et al. 2018). We use this as a reference resolution, and show the RML image restored to 46 mas in the bottom center panel. We also show images convolved with
beams of 1/4 (top center), 1/3 (top right), 1/2 (bottom left), and 3/2 (bottom right) the size of the 46 mas reference.
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incorporated into the imaging process, and how each of these
regularizers impacts image synthesis of ALMA continuum data
of protoplanetary disk data sets. We found that for both real data
of the HD 143006 protoplanetary disk and simulated proto-
planetary disk data, a combination of entropy, sparsity, and TSV
regularization works well, while TV regularization does not
adequately retain fine details in the images. With these methods
we improved the angular resolution of the images by a factor of
2–3 compared to CLEAN.

In addition, we explored CV methods as a robust procedure
for hyperparameter tuning and image validation to maximize
image fidelity and resolution. We tested K-fold CV with random
cell visibility partitioning and novel dartboard partitioning,
comparing these methods to tuning hyperparameters by trial and
error. We found that tuning by random cell CV or by eye
achieved images closest to the ground truth, while dartboard
partitioning resulted in a similar but slightly noisier image. We
found that a range of hyperparameter values can result in
comparably low CV scores, suggesting that it is not necessary to
precisely tune hyperparameters according to the CV score
(which can impose a computational burden). Rather, using CV
across a coarse grid of hyperparameter values is an efficient way
to guide the tuning process.

Overall, RML techniques provide flexible imaging processes
that are well-suited for applications to ALMA continuum
protoplanetary disk measurement sets. The use of RML
techniques can improve image fidelity on small scales, and
expanding applications to spectral line data has the potential to
aid the detection and characterization of kinematic disturbances
within protoplanetary disks (such as the discovery of the
circumplanetary disk candidate in the disk around AS 209
presented in Bae et al. 2022). Exploring regularization on a
wider range of source morphologies observed by ALMA,
including image cubes with many channels, will broaden our
understanding of how image synthesis with RML techniques can
benefit different science cases.
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Appendix
Recommendations for RML with ALMA

The MPoL software used in this study is open source and
designed with ALMA measurement sets in mind. We
recommend that anyone wishing to use MPoL for RML imaging
of ALMA data follow these general steps.

1. Obtain arrays of complex visibility data. MPoL is designed
to work directly with arrays of complex visibilities.
Visibilities can be obtained from CASA measurement
sets using casatools. Open source software packages
like visread11 can aid in this process.

2. Select pixel size and number of pixels in the image. These
pixels will serve as the model parameterization, and allow
ungridded visibilities to be gridded. It is important to be
mindful of the choice of pixel size, as pixels that are too
large will place an intrinsic resolution limit on the final
image, while using too many small pixels will introduce an
unnecessary computational burden during the imaging
process. At this point, it is also a good idea to create a dirty
image with MPoL to make sure that everything has been
loaded and initialized as expected.

3. Set the initial state of the model and determine which
regularizers to include in the loss function.We recommend
initializing the model with the dirty image. Dirty image
initialization leads to faster convergence of the loss
function. The loss function may include any number of
regularizing terms.

4. Define a range of hyperparameter values to be tested with
CV. Tuning hyperparameters with CV is the most time-
consuming part of this imaging workflow, as each
hyperparameter setting is tested on multiple subsets of
the full data set (the training data). The total amount of
time can be minimized by carefully selecting the range of
hyperparameter values to be tested. We recommend
beginning with a coarse grid of values. The hyperpara-
meter values that yield the highest fidelity images can
change with the data set, so starting with a wide range of
values (i.e., spanning several orders of magnitude) helps

11 https://mpol-dev.github.io/visread/
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quickly hone in on a narrower range of potential values.
For example, while one data set might minimize the CV
scores with an entropy prior with λ= 0.1, another data set
might minimize the CV score with λ= 10, so a coarse
round of CV might include λ= [0.01, 0.1, 1, 10].

Because generating an image is computationally
much faster than running the full CV process, visualizing
the effects of different regularizer strengths on the data set
(e.g., as in Figure 4) is an efficient way to determine the
initial range of hyperparameter values to be tested with
CV. While synthesizing images with the full data set is not
necessary at this stage, the extra effort is useful for
constraining the range of plausible hyperparameter values
and lowers the possibility of testing hyperparameter values
that result in a poor fit to the data. Additionally, data sets
which share features like source morphology and baseline
coverage (like the two disk data sets presented in this
study) may have optimal hyperparameter values that are
similar, so hyperparameter values used for imaging
comparable data sets could provide a good starting point
for the CV process, though this will not always be
possible.

5. Set up the CV process by defining the number of K-folds
and data partitioning scheme. We recommend using
K= 10, which has been shown to balance bias and
variance in the estimation and has already been used with
success in interferometric imaging.

6. Perform CV (perhaps in a coarsely defined round and a
fine-tuning round) to obtain optimal imaging hyperpara-
meters. The set of hyperparameters that minimizes the CV
score corresponds to the model with the best predictive
performance. Ensure that each K-fold has reached
convergence during the CV process; if each K-fold did
not fully converge, the CV score is invalid and CVmust be
restarted with enough iterations to allow full convergence.
For the HD 143006 data set, computing a single CV score
(K = 10, 15,000 iterations each) took around 11-12
minutes on a NVIDIA Tesla K80 GPU. This will scale
depending on the number of hyperparameter combinations
tested and the number of GPUs employed. For example,
performing CV for a 7× 7 grid of λ combinations (such as
those shown in Figure 7) took roughly 2.5 hr on 4 GPUs,
though on a single GPU this would increase to nearly
9.5 hr. If CV is performed in multiple rounds, then smaller
(and thus faster) grids are practical.

7. Image using the full data set with the hyperparameters that
minimized the CV score. Ensure that the model has fully
converged. If it has, the result is a fully regularized image.
At this stage, it may be useful to adjust hyperparameters by
hand and assess the changes visually to determine whether
further tuning is needed. For the HD 143006 data set,
generating a single image took about 10 seconds NVIDIA
Tesla K80 GPU.

8. Optionally, convolve the image with a restoring beam.
While beam convolution is not required in an RML
imaging workflow, some users may find it helpful for
characterizing the resolution of the image by filtering out
potential spurious high-resolution features in the image.
We recommend restoring the image to no more than 1/3 to
1/2 of the nominal resolution in order to retain the
superresolution benefits of RML imaging.

While this is a rough outline of a functional RMLworkflow, in
practice the RML imaging process need not be so linear. For
some imaging cases, one may find it beneficial to try individual
regularizers before combining them, or to produce some
preliminary images by hand tuning regularizers before running
the full CV process. When selecting regularizers, we recommend
considering the qualitative features the source is likely to have.
Maximum entropy and sparsity regularization tend to produce
high-resolution features, and sparsity can effectively remove
background noise. TV and TSV regularizers tend to emphasize
sharp edges in the image, with TV enforcing sharp edges more
rigidly. These general characteristics can help inform which
regularizers to include in the loss function.
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