57 research outputs found

    Extraction of Stride Events From Gait Accelerometry During Treadmill Walking

    Get PDF
    Objective: evaluating stride events can be valuable for understanding the changes in walking due to aging and neurological diseases. However, creating the time series necessary for this analysis can be cumbersome. In particular, finding heel contact and toe-off events which define the gait cycles accurately are difficult. Method: we proposed a method to extract stride cycle events from tri-axial accelerometry signals. We validated our method via data collected from 14 healthy controls, 10 participants with Parkinson's disease, and 11 participants with peripheral neuropathy. All participants walked at self-selected comfortable and reduced speeds on a computer-controlled treadmill. Gait accelerometry signals were captured via a tri-axial accelerometer positioned over the L3 segment of the lumbar spine. Motion capture data were also collected and served as the comparison method. Results: our analysis of the accelerometry data showed that the proposed methodology was able to accurately extract heel and toe-contact events from both feet. We used t-tests, analysis of variance (ANOVA) and mixed models to summarize results and make comparisons. Mean gait cycle intervals were the same as those derived from motion capture, and cycle-to-cycle variability measures were within 1.5%. Subject group differences could be similarly identified using measures with the two methods. Conclusions: a simple tri-axial accelerometer accompanied by a signal processing algorithm can be used to capture stride events. Clinical impact: the proposed algorithm enables the assessment of stride events during treadmill walking, and is the first step toward the assessment of stride events using tri-axial accelerometers in real-life settings

    Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed

    Get PDF
    BACKGROUND: Decreased gait speed and increased stride time, stride length, double support time, and stance time variability have consistently been associated with falling whereas step width variability has not been strongly related to falls. The purpose was to examine the linear and nonlinear associations between gait variability and fall history in older persons and to examine the influence of gait speed. METHODS: Gait characteristics and fall history were obtained in 503 older adults (mean age = 79; 61% female) participating in the Cardiovascular Health Study who could ambulate independently. Gait characteristics were recorded from two trials on a 4 meter computerized walkway at the subject's self-selected walking speed. Gait variability was calculated as the coefficient of variation. The presence of a fall in the past 12 months was determined by interview. The nonlinear association between gait variability and fall history was examined using a simple three level classification derived from the distribution of the data and from literature based cut-points. Multivariate logistic regression was used to examine the association between step width variability (extreme or moderate) and fall history stratifying by gait speed (1.0 m/s) and controlling for age and gender. RESULTS: Step length, stance time, and step time variability did not differ with respect to fall history (p > .33). Individuals with extreme step width variability (either low or high step width variability) were more likely to report a fall in the past year than individuals with moderate step width variability. In individuals who walked ≥ 1.0 m/s (n = 281), after controlling for age, gender, and gait speed, compared to individuals with moderate step width variability individuals with either low or high step width variability were more likely to have fallen in the past year (OR and 95% CI 4.38 [1.79–10.72]). The association between step width variability and fall history was not significant in individuals who walked < 1.0 m/s (n = 224). CONCLUSION: Extreme (either too little or too much) step width variability is associated with falls in the past year in older persons who walk at or near normal gait speed and not in older persons who walk slowly (<1.0 m/s)

    Exercise-based interventions to enhance long-term sustainability of physical activity in older adults: a systematic review and meta-analysis of randomized clinical trials

    Get PDF
    Older adults; Physical activity; AdherenceAdultos mayores; Actividad física; AdherenciaAdults majors; Activitat física; AdherènciaExercise is a form of physical activity (PA). PA is an important marker of health and quality of life in older adults. The purpose of this study was to conduct a systematic review of the literature to assess the effect of exercise-based interventions on an at least six-month follow up PA measure, and to describe the specific strategies implemented during the intervention to strengthen the sustainability of PA in community-dwelling 65+ year-old adults. We registered and conducted a systematic review and meta-analysis (PROSPERO: CRD42017070892) of randomized clinical trials (RCT). We searched three electronic databases during January 2018 to identify RCT assessing any type of exercise-based intervention. Studies had to report a pre-, post-, and at least 6-month post-intervention follow-up. To be included, at least one PA outcome had to be assessed. The effect of exercise-based interventions was assessed compared to active (e.g., a low-intensity type of exercise, such as stretching or toning activities) and non-active (e.g., usual care) control interventions at several time points. Secondary analyses were conducted, restricted to studies that reported specific strategies to enhance the sustainability of PA. The intervention effect was measured on self-reported and objective measures of time spent in PA, by means of standardized mean differences. Standardized mean differences of PA level were pooled. Pooled estimates of effect were computed with the DerSimonian–Laird method, applying a random effects model. The risk of bias was also assessed. We included 12 studies, comparing 18 exercise intervention groups to four active and nine non-active control groups. Nine studies reported specific strategies to enhance the long-term sustainability of PA. The strategies were mostly related to the self-efficacy, self-control, and behavior capability principles based on the social cognitive theory. Exercise interventions compared to active control showed inconclusive and heterogeneous results. When compared to non-active control, exercise interventions improved PA time at the six-months follow up (standardized mean difference (SMD) 0.30; 95%CI 0.15 to 0.44; four studies; 724 participants; I2 0%), but not at the one- or two-years follow-ups. No data were available on the mid- and long-term effect of adding strategies to enhance the sustainability of PA. Exercise interventions have small clinical benefits on PA levels in community-dwelling older adults, with a decline in the observed improvement after six months of the intervention cessation.The present study was funded by United States Department of Health & Human Services National Institutes of Health (NIH), USA, and NIH National Institute on Aging (NIA), USA, (K24 AG057728)

    Impact of Health Perception, Balance Perception, Fall History, Balance Performance, and Gait Speed on Walking Activity in Older Adults

    No full text
    Background and Purpose: Disagreement currently exists regarding the contributions of various factors to physical activity in older adults. The purpose of this cross-sectional study was to investigate the simultaneous impact of psychological (health perception and balance perception) and physiological (gait speed, fall history, and balance performance) factors on walking activity in older adults
    • …
    corecore