699 research outputs found

    Hippocampal activity patterns carry information about objects in temporal context

    Get PDF
    The hippocampus is critical for human episodic memory, but its role remains controversial. One fundamental question concerns whether the hippocampus represents specific objects or assigns context-dependent representations to objects. Here, we used multivoxel pattern similarity analysis of fMRI data during retrieval of learned object sequences to systematically investigate hippocampal coding of object and temporal context information. Hippocampal activity patterns carried information about the temporal positions of objects in learned sequences, but not about objects or temporal positions in random sequences. Hippocampal activity patterns differentiated between overlapping object sequences and between temporally adjacent objects that belonged to distinct sequence contexts. Parahippocampal and perirhinal cortex showed different pattern information profiles consistent with coding of temporal position and object information, respectively. These findings are consistent with models proposing that the hippocampus represents objects within specific temporal contexts, a capability that might explain its critical role in episodic memory

    The sub-stellar birth rate from UKIDSS

    Get PDF
    We present a new sample of mid-L to mid-T dwarfs with effective temperatures of 11001700 K selected from the UKIDSS Large Area Survey (LAS) and confirmed with infrared spectra from X-shooter/Very Large Telescope. This effective temperature range is especially sensitive to the formation history of Galactic brown dwarfs and allows us to constrain the form of the sub-stellar birth rate, with sensitivity to differentiate between a flat (stellar like) birth rate and an exponentially declining form. We present the discovery of 63 new L and T dwarfs from the UKIDSS LAS DR7, including the identification of 12 likely unresolved binaries, which form the first complete sub-set from our programme, covering 495 square degrees of sky, complete to J = 18.1. We compare our results for this sub-sample with simulations of differing birth rates for objects of masses 0.10-0.03 M-circle dot and ages 1-10 Gyr. We find that the more extreme birth rates (e. g. a halo type form) can likely be excluded as the true form of the birth rate. In addition, we find that although there is substantial scatter we find a preference for a mass function, with a power-law index a in the range -1 <alpha <0 that is consistent (within the errors) with the studies of late T dwarfs.Peer reviewe

    The distribution of transit durations for Kepler planet candidates and implications for their orbital eccentricities

    Get PDF
    ‘In these times, during the rise in the popularity of institutional repositories, the Society does not forbid authors from depositing their work in such repositories. However, the AAS regards the deposit of scholarly work in such repositories to be a decision of the individual scholar, as long as the individual's actions respect the diligence of the journals and their reviewers.’ Original article can be found at : http://iopscience.iop.org/ Copyright American Astronomical SocietyDoppler planet searches have discovered that giant planets follow orbits with a wide range of orbital eccentricities, revolutionizing theories of planet formation. The discovery of hundreds of exoplanet candidates by NASA's Kepler mission enables astronomers to characterize the eccentricity distribution of small exoplanets. Measuring the eccentricity of individual planets is only practical in favorable cases that are amenable to complementary techniques (e.g., radial velocities, transit timing variations, occultation photometry). Yet even in the absence of individual eccentricities, it is possible to study the distribution of eccentricities based on the distribution of transit durations (relative to the maximum transit duration for a circular orbit). We analyze the transit duration distribution of Kepler planet candidates. We find that for host stars with T > 5100 K we cannot invert this to infer the eccentricity distribution at this time due to uncertainties and possible systematics in the host star densities. With this limitation in mind, we compare the observed transit duration distribution with models to rule out extreme distributions. If we assume a Rayleigh eccentricity distribution for Kepler planet candidates, then we find best fits with a mean eccentricity of 0.1-0.25 for host stars with T ≤ 5100 K. We compare the transit duration distribution for different subsets of Kepler planet candidates and discuss tentative trends with planetary radius and multiplicity. High-precision spectroscopic follow-up observations for a large sample of host stars will be required to confirm which trends are real and which are the results of systematic errors in stellar radii. Finally, we identify planet candidates that must be eccentric or have a significantly underestimated stellar radius.Peer reviewedFinal Accepted Versio

    The Polarizability of the Deuteron

    Get PDF
    The scalar and tensor polarizabilities of the deuteron are calculated using the recently developed effective field theory that describes nucleon-nucleon interactions. Leading and next-to-leading order contributions in the perturbative expansion predict a scalar electric polarizability of 0.595 fm^3. The tensor electric polarizability receives contributions starting at next-to-leading order from the exchange of a single potential pion and is found to be -0.062 fm^3. We compute the leading contributions to the scalar and tensor magnetic polarizabilities, finding 0.067 fm^3 and 0.195 fm^3, respectively.Comment: 13 pages, 4 figures as 6 eps files, latex. References adde

    A deep WISE search for very late type objects and the discovery of two halo/thick-disc T dwarfs : WISE 0013+0634 and WISE 0833+0052

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reservedA method is defined for identifying late-T and Y dwarfs in WISE down to low values of signal-to-noise. This requires a WISE detection only in the W2-band and uses the statistical properties of the WISE multiframe measurements and profile fit photometry to reject contamination resulting from non-point-like objects, variables and moving sources. To trace our desired parameter space, we use a control sample of isolated non-moving non-variable point sources from the Sloan Digital Sky Survey (SDSS), and identify a sample of 158 WISE W2-only candidates down to a signal-to-noise limit of eight. For signal-to-noise ranges >10 and 8-10, respectively, similar to 45 and similar to 90 per cent of our sample fall outside the selection criteria published by the WISE team, mainly due to the type of constraints placed on the number of individual W2 detections. We present follow-up of eight candidates and identify WISE 0013+0634 and WISE 0833+0052, T8 and T9 dwarfs with high proper motion (similar to 1.3 and similar to 1.8 arcsec yr(-1)). Both objects show a mid-infrared/near-infrared excess of similar to 1-1.5 mag and are K band suppressed. Distance estimates lead to space motion constraints that suggest halo (or at least thick disc) kinematics. We then assess the reduced proper motion diagram of WISE ultracool dwarfs, which suggests that late-T and Y dwarfs may have a higher thick-disc/halo population fraction than earlier objects.Peer reviewe

    Discovery of a new Y dwarf: WISE J030449.03-270508.3

    Get PDF
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record [D. J. Pinfield, et al, Discovery of a new Y dwarf: WISE J030449.03−270508.3, MNRAS, Vol. 444 (2): 1931-1939, September 2014] is available online at: https://doi.org/10.1093/mnras/stu1540.We present a new Y dwarf, WISE J030449.03−270508.3, confirmed from a candidate sample designed to pick out low-temperature objects from the Wide-field Infrared Survey Explorer (WISE) data base. The new object is typed Y0pec following a visual comparison with spectral standards, and lies at a likely distance of 10–17 pc. Its tangential velocity suggests thin disc membership, but it shows some spectral characteristics that suggest that it may be metal poor and/or older than previously identified Y0 dwarfs. Based on trends seen for warmer late-type T dwarfs, the Y-band flux peak morphology is indicative of sub-solar metallicity, and the enhanced red wing of the J-band flux peak offers evidence for high gravity and/or low metallicity (with associated model trends suggesting an age closer to ∼10 Gyr and mass in the range 0.02–0.03 Mȯ). This object may thus be extending the population parameter space of the known Y0 dwarfs.Peer reviewe

    Transit Timing Observations from Kepler: III. Confirmation of 4 Multiple Planet Systems by a Fourier-Domain Study of Anti-correlated Transit Timing Variations

    Get PDF
    We present a method to confirm the planetary nature of objects in systems with multiple transiting exoplanet candidates. This method involves a Fourier-Domain analysis of the deviations in the transit times from a constant period that result from dynamical interactions within the system. The combination of observed anti-correlations in the transit times and mass constraints from dynamical stability allow us to claim the discovery of four planetary systems Kepler-25, Kepler-26, Kepler-27, and Kepler-28, containing eight planets and one additional planet candidate.Comment: Accepted to MNRA

    Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler

    Get PDF
    We report the distribution of planets as a function of planet radius (R_p), orbital period (P), and stellar effective temperature (Teff) for P < 50 day orbits around GK stars. These results are based on the 1,235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 Earth radii (Re). For each of the 156,000 target stars we assess the detectability of planets as a function of R_p and P. We also correct for the geometric probability of transit, R*/a. We consider first stars within the "solar subset" having Teff = 4100-6100 K, logg = 4.0-4.9, and Kepler magnitude Kp < 15 mag. We include only those stars having noise low enough to permit detection of planets down to 2 Re. We count planets in small domains of R_p and P and divide by the included target stars to calculate planet occurrence in each domain. Occurrence of planets varies by more than three orders of magnitude and increases substantially down to the smallest radius (2 Re) and out to the longest orbital period (50 days, ~0.25 AU) in our study. For P < 50 days, the radius distribution is given by a power law, df/dlogR= k R^\alpha. This rapid increase in planet occurrence with decreasing planet size agrees with core-accretion, but disagrees with population synthesis models. We fit occurrence as a function of P to a power law model with an exponential cutoff below a critical period P_0. For smaller planets, P_0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over Teff = 3600-7100 K, spanning M0 to F2 dwarfs. The occurrence of 2-4 Re planets in the Kepler field increases with decreasing Teff, making these small planets seven times more abundant around cool stars than the hottest stars in our sample. [abridged]Comment: Submitted to ApJ, 22 pages, 10 figure
    corecore