107 research outputs found

    'Resilience thinking' in transport planning

    Get PDF
    Resilience has been discussed in ecology for over forty years. While some aspects of resilience have received attention in transport planning, there is no unified definition of resilience in transportation. To define resilience in transportation, I trace back to the origin of resilience in ecology with a view of revealing the essence of resilience thinking and its relevance to transport planning. Based on the fundamental concepts of engineering resilience and ecological resilience, I define "comprehensive resilience in transportation" as the quality that leads to recovery, reliability and sustainability. Observing that previous work in resilience analysis in transportation has focussed on addressing engineering resilience rather than ecological resilience, I conclude that transformability has been generally overlooked and needs to be incorporated in the analysis framework for comprehensive resilience in transportation

    Analysis of Transportation Networks Subject To Natural Hazards – insights from a Colombian case

    Get PDF
    ABSTRACT: This study provides an applied framework to derive the connectivity reliability and vulnerability of inter-urban transportation systems under network disruptions. The proposed model integrates statistical reliability analysis to find the reliability and vulnerability of transportation networks. Most of the modern research in this field has focused on urban transportation networks where the primary concerns are guaranteeing predefined standards of capacity and travel time. However, at a regional and national level, especially in developing countries, the connectivity of remote populations in the case of disaster is of utmost importance. The applicability of the framework is demonstrated with a case study in the state of Antioquia, Colombia, using historical records from the 2010-2011 rainy season, an aspect that stands out and gives additional support compared to previous studies that considers simulated data from assumed distributions. The results provide significant insights to practitioners and researchers for the design and management of transportation systems and route planning strategies under this type of disruptions

    Beyond a complete failure: The impact of partial capacity reductions on public transport network vulnerability

    No full text
    Disruptions often result with partial capacity reduction without resulting with a complete breakdown. This study aims to move beyond the analysis of complete failure by investigating the impacts of partial capacity reduction on public transport network performance. We analyse the relation between the extent of capacity reduction at the line level and its consequences on societal costs by performing a full network scan. This analysis framework is applied to planned temporary disruptions in the rapid public transport network in Stockholm, Sweden. Our results indicate that the network is highly vulnerable since it is characterized by greater negative impacts in a disproportional relation to the increase in the original capacity reduction. The non-linear properties of network effects and route choice result in non-trivial relation which carry implications on disruption management the deployment of mitigation measures.Transport & PlanningCivil Engineering and Geoscience

    Beyond a Complete Failure: The Impact of Partial Capacity Degradation on Public Transport Network Vulnerability

    No full text
    Disruptions in public transport networks (PTNs) often lead to partial capacity reductions rather than complete closures. This study aims to move beyond the vulnerability analysis of complete failures by investigating the impacts of a range of capacity reductions on PTN performance. The relation between network performance and the degradation of line or link capacities is investigated by establishing a vulnerability curve and related metrics. The analysis framework is applied to a full-scan analysis of planned temporary line-level capacity reductions and an analysis of unplanned link-level capacity reductions on the most central segments in the multi-modal rapid PTN of Stockholm, Sweden. The impacts of capacity reductions are assessed using a non-equilibrium dynamic public transport operations and assignment model. The nonlinear properties of on-board crowding, denied boarding, network effects and route choice result in non-trivial, generally convex, relations which carry implications on disruption planning and real-time management.Transport and Plannin
    • …
    corecore