50 research outputs found

    Uncertain inflation and price-level rules

    Get PDF
    An analysis of the sources and costs of unpredictable inflation, finding that the uncertainty stems from a lack of appropriate constraints on the monetary policy process, and that the costs could be sharply reduced by adopting a policy that targets a long-run path for the price level.Inflation (Finance) ; Prices

    Has the long-run velocity of M2 shifted? Evidence from the P* model

    Get PDF
    An examination of one of the P-Star model's primary assumptions: the constancy of M2's long-run velocity, or V-Star. Using actual data through the end of 1992, the authors find that simulations of the model under a variety of hypotheses regarding changes in V-Star provide little support for a dramatic shift in that measure.Inflation (Finance) ; Money supply ; Velocity of money

    Integrating business and personal income taxes

    Get PDF
    An examination of the problems surrounding the current corporate tax system, including a detailed look at several reform proposals from the Treasury Department.Corporations - Taxation ; Income tax

    Cointegration and transformed series

    Get PDF
    An explanation of how to use nonparametric techniques to search for and test possible cointegrating transformations of time series.Time-series analysis ; Econometrics

    Dissecting maternal and fetal genetic effects underlying the associations between maternal phenotypes, birth outcomes, and adult phenotypes: A mendelian-randomization and haplotype-based genetic score analysis in 10,734 mother–infant pairs

    Get PDF
    Author summaryWhy was this study done? Maternal height, BMI, blood glucose, and blood pressure are associated with gestational duration, birth weight, and birth length. These birth outcomes are subsequently associated with late-onset health conditions. The causal mechanisms and the relative contributions of maternal and fetal genetic effects underlying these observed associations are not clear. What did the researchers do and find? We dissected the relative contributions of maternal and fetal genetic effects using haplotype genetic score analysis in 10,734 mother-infant pairs of European ancestry. Genetically elevated maternal height is associated with longer gestational duration and larger birth size. In the fetus, alleles associated with adult height are positively associated with birth size. Alleles elevating blood pressure are associated with shorter gestational duration through a maternal effect and are associated with reduced fetal growth through a fetal genetic effect. Alleles that increase blood glucose in the mother are associated with increased birth weight, whereas risk alleles for type 2 diabetes in the fetus are associated with reduced birth weight. Alleles raising birth weight in fetus are associated with shorter gestational duration and higher maternal blood pressure during pregnancy. What do these findings mean? Maternal size and fetal growth are important factors in shaping the duration of gestation. Fetal growth is influenced by both maternal and fetal effects. Higher maternal BMI and glucose levels positively associate with birth weight through maternal effects. In the fetus, alleles associated with higher metabolic risks are negatively associated with birth weight. More rapid fetal growth is associated with shorter gestational duration and higher maternal blood pressure. These maternal and fetal genetic effects can largely explain the observed associations between maternal phenotypes and birth outcomes, as well as the life-course associations between these birth outcomes and adult phenotypes. Background Many maternal traits are associated with a neonate's gestational duration, birth weight, and birth length. These birth outcomes are subsequently associated with late-onset health conditions. The causal mechanisms and the relative contributions of maternal and fetal genetic effects behind these observed associations are unresolved. Methods and findings Based on 10,734 mother-infant duos of European ancestry from the UK, Northern Europe, Australia, and North America, we constructed haplotype genetic scores using single-nucleotide polymorphisms (SNPs) known to be associated with adult height, body mass index (BMI), blood pressure (BP), fasting plasma glucose (FPG), and type 2 diabetes (T2D). Using these scores as genetic instruments, we estimated the maternal and fetal genetic effects underlying the observed associations between maternal phenotypes and pregnancy outcomes. We also used infant-specific birth weight genetic scores as instrument and examined the effects of fetal growth on pregnancy outcomes, maternal BP, and glucose levels during pregnancy. The maternal nontransmitted haplotype score for height was significantly associated with gestational duration (p= 2.2 x 10(-4)). Both maternal and paternal transmitted height haplotype scores were highly significantly associated with birth weight and length (p<1 x 10(-17)). The maternal transmitted BMI scores were associated with birth weight with a significant maternal effect (p= 1.6 x 10(-4)). Both maternal and paternal transmitted BP scores were negatively associated with birth weight with a significant fetal effect (p= 9.4 x 10(-3)), whereas BP alleles were significantly associated with gestational duration and preterm birth through maternal effects (p= 3.3 x 10(-2)andp= 4.5 x 10(-3), respectively). The nontransmitted haplotype score for FPG was strongly associated with birth weight (p= 4.7 x 10(-6)); however, the glucose-increasing alleles in the fetus were associated with reduced birth weight through a fetal effect (p= 2.2 x 10(-3)). The haplotype scores for T2D were associated with birth weight in a similar way but with a weaker maternal effect (p= 6.4 x 10(-3)) and a stronger fetal effect (p= 1.3 x 10(-5)). The paternal transmitted birth weight score was significantly associated with reduced gestational duration (p= 1.8 x 10(-4)) and increased maternal systolic BP during pregnancy (p= 2.2 x 10(-2)). The major limitations of the study include missing and heterogenous phenotype data in some data sets and different instrumental strength of genetic scores for different phenotypic traits. Conclusions We found that both maternal height and fetal growth are important factors in shaping the duration of gestation: genetically elevated maternal height is associated with longer gestational duration, whereas alleles that increase fetal growth are associated with shorter gestational duration. Fetal growth is influenced by both maternal and fetal effects and can reciprocally influence maternal phenotypes: taller maternal stature, higher maternal BMI, and higher maternal blood glucose are associated with larger birth size through maternal effects; in the fetus, the height- and metabolic-risk-increasing alleles are associated with increased and decreased birth size, respectively; alleles raising birth weight in the fetus are associated with shorter gestational duration and higher maternal BP. These maternal and fetal genetic effects may explain the observed associations between the studied maternal phenotypes and birth outcomes, as well as the life-course associations between these birth outcomes and adult phenotypes.Peer reviewe

    Association of maternal prenatal copper concentration with gestational duration and preterm birth: a multicountry meta-analysis

    Get PDF
    Background Copper (Cu), an essential trace mineral regulating multiple actions of inflammation and oxidative stress, has been implicated in risk for preterm birth (PTB). Objectives This study aimed to determine the association of maternal Cu concentration during pregnancy with PTB risk and gestational duration in a large multicohort study including diverse populations. Methods Maternal plasma or serum samples of 10,449 singleton live births were obtained from 18 geographically diverse study cohorts. Maternal Cu concentrations were determined using inductively coupled plasma mass spectrometry. The associations of maternal Cu with PTB and gestational duration were analyzed using logistic and linear regressions for each cohort. The estimates were then combined using meta-analysis. Associations between maternal Cu and acute-phase reactants (APRs) and infection status were analyzed in 1239 samples from the Malawi cohort. Results The maternal prenatal Cu concentration in our study samples followed normal distribution with mean of 1.92 μg/mL and standard deviation of 0.43 μg/mL, and Cu concentrations increased with gestational age up to 20 wk. The random-effect meta-analysis across 18 cohorts revealed that 1 μg/mL increase in maternal Cu concentration was associated with higher risk of PTB with odds ratio of 1.30 (95% confidence interval [CI]: 1.08, 1.57) and shorter gestational duration of 1.64 d (95% CI: 0.56, 2.73). In the Malawi cohort, higher maternal Cu concentration, concentrations of multiple APRs, and infections (malaria and HIV) were correlated and associated with greater risk of PTB and shorter gestational duration. Conclusions Our study supports robust negative association between maternal Cu and gestational duration and positive association with risk for PTB. Cu concentration was strongly correlated with APRs and infection status suggesting its potential role in inflammation, a pathway implicated in the mechanisms of PTB. Therefore, maternal Cu could be used as potential marker of integrated inflammatory pathways during pregnancy and risk for PTB
    corecore